Semin Liver Dis 2015; 35(01): 075-080
DOI: 10.1055/s-0034-1397351
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Interaction of Host Cell microRNAs with the HCV RNA Genome during Infection of Liver Cells

Cecilia D. Sedano
1   Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
,
Peter Sarnow
1   Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2015 (online)

Abstract

It has remained an enigma how hepatitis C viral (HCV) RNA can persist in the liver of infected patients for many decades. With the recent discovery of roles for microRNAs in gene expression, it was reported that the HCV RNA genome subverts liver-specific microRNA miR-122 to protect its 5′ end from degradation by host cell exoribonucleases. Sequestration of miR-122 in cultured liver cells and in the liver of chimpanzees by small, modified antisense RNAs resulted in dramatic loss of HCV RNA and viral yield. This finding led to the first successful human trial in which subcutaneous administration of antisense molecules against miR-122 lowered viral yield in HCV patients, without the emergence of resistant virus. In this review, the authors summarize the molecular mechanism by which miR-122 protects the HCV RNA genome from degradation by exoribonucleases Xrn1 and Xrn2 and discuss the application of miR-122 antisense molecules in the clinic.

 
  • References

  • 1 Hoofnagle JH. Course and outcome of hepatitis C. Hepatology 2002; 36 (5) (Suppl. 01) S21-S29
  • 2 Lavanchy D. Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect 2011; 17 (2) 107-115
  • 3 Casey LC, Lee WM. Hepatitis C virus therapy update 2013. Curr Opin Gastroenterol 2013; 29 (3) 243-249
  • 4 Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2011; 19 (2) 95-103
  • 5 Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression?. Biochem Soc Trans 2008; 36 (Pt 6) 1224-1231
  • 6 Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003; 115 (7) 787-798
  • 7 Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6 (4) 259-269
  • 8 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294 (5543) 853-858
  • 9 Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21 (17) 4663-4670
  • 10 Sontheimer EJ, Carthew RW. Silence from within: endogenous siRNAs and miRNAs. Cell 2005; 122 (1) 9-12
  • 11 Chen Y, Boland A, Kuzuoğlu-Öztürk D , et al. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 2014; 54 (5) 737-750
  • 12 Meijer HA, Kong YW, Lu WT , et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 2013; 340 (6128) 82-85
  • 13 Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 2012; 336 (6078) 237-240
  • 14 Cullen BR. Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011; 25 (18) 1881-1894
  • 15 Gerlach D, Kriventseva EV, Rahman N, Vejnar CE, Zdobnov EM. miROrtho: computational survey of microRNA genes. Nucleic Acids Res 2009; 37 (Database issue): D111-D117
  • 16 Chang J, Nicolas E, Marks D , et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004; 1 (2) 106-113
  • 17 Esau C, Davis S, Murray SF , et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3 (2) 87-98
  • 18 Janssen HL, Reesink HW, Lawitz EJ , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 19 Krützfeldt J, Rajewsky N, Braich R , et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438 (7068) 685-689
  • 20 Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005; 309 (5740) 1577-1581
  • 21 Machlin ES, Sarnow P, Sagan SM. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci U S A 2011; 108 (8) 3193-3198
  • 22 Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM. Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci U S A 2013; 110 (5) 1881-1886
  • 23 Sedano CD, Sarnow P. Subversion of liver-specific miR-122 by hepatitis C virus RNA genome to protect against exoribonuclease Xrn2. Cell Host Microbe 2014; 16 (2) 257-264
  • 24 Amberg DC, Goldstein AL, Cole CN. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev 1992; 6 (7) 1173-1189
  • 25 Larimer FW, Stevens A. Disruption of the gene XRN1, coding for a 5′----3′ exoribonuclease, restricts yeast cell growth. Gene 1990; 95 (1) 85-90
  • 26 Stevens A. An exoribonuclease from Saccharomyces cerevisiae: effect of modifications of 5′ end groups on the hydrolysis of substrates to 5′ mononucleotides. Biochem Biophys Res Commun 1978; 81 (2) 656-661
  • 27 Stevens A. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′ leads to 3′ mode of hydrolysis. J Biol Chem 1980; 255 (7) 3080-3085
  • 28 Chang JH, Xiang S, Xiang K, Manley JL, Tong L. Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1. Nat Struct Mol Biol 2011; 18 (3) 270-276
  • 29 Heyer WD, Johnson AW, Reinhart U, Kolodner RD. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol Cell Biol 1995; 15 (5) 2728-2736
  • 30 Johnson AW. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol 1997; 17 (10) 6122-6130
  • 31 Käslin E, Heyer WD. A multifunctional exonuclease from vegetative Schizosaccharomyces pombe cells exhibiting in vitro strand exchange activity. J Biol Chem 1994; 269 (19) 14094-14102
  • 32 Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 1997; 136 (4) 761-773
  • 33 Till DD, Linz B, Seago JE , et al. Identification and developmental expression of a 5′-3′ exoribonuclease from Drosophila melanogaster. Mech Dev 1998; 79 (1–2) 51-55
  • 34 Kastenmayer JP, Green PJ. Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc Natl Acad Sci U S A 2000; 97 (25) 13985-13990
  • 35 Li CH, Irmer H, Gudjonsdottir-Planck D , et al. Roles of a Trypanosoma brucei 5′->3′ exoribonuclease homolog in mRNA degradation. RNA 2006; 12 (12) 2171-2186
  • 36 Chatterjee S, Grosshans H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans . Nature 2009; 461 (7263) 546-549
  • 37 Petfalski E, Dandekar T, Henry Y, Tollervey D. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol Cell Biol 1998; 18 (3) 1181-1189
  • 38 Brannan K, Kim H, Erickson B , et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol Cell 2012; 46 (3) 311-324
  • 39 Kim M, Krogan NJ, Vasiljeva L , et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 2004; 432 (7016) 517-522
  • 40 Pearson EL, Moore CL. Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1. J Biol Chem 2013; 288 (27) 19750-19759
  • 41 West S, Gromak N, Proudfoot NJ. Human 5′ —> 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 2004; 432 (7016) 522-525
  • 42 Jones DM, Domingues P, Targett-Adams P, McLauchlan J. Comparison of U2OS and Huh-7 cells for identifying host factors that affect hepatitis C virus RNA replication. J Gen Virol 2010; 91 (Pt 9) 2238-2248
  • 43 Ariumi Y, Kuroki M, Kushima Y , et al. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J Virol 2011; 85 (14) 6882-6892
  • 44 Pager CT, Schütz S, Abraham TM, Luo G, Sarnow P. Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules. Virology 2013; 435 (2) 472-484
  • 45 Scheller N, Mina LB, Galão RP , et al. Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc Natl Acad Sci U S A 2009; 106 (32) 13517-13522
  • 46 Wilson JA, Zhang C, Huys A, Richardson CD. Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol 2011; 85 (5) 2342-2350
  • 47 Roberts AP, Lewis AP, Jopling CL. miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res 2011; 39 (17) 7716-7729
  • 48 Shimakami T, Yamane D, Jangra RK , et al. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci U S A 2012; 109 (3) 941-946
  • 49 Zhang C, Huys A, Thibault PA, Wilson JA. Requirements for human Dicer and TRBP in microRNA-122 regulation of HCV translation and RNA abundance. Virology 2012; 433 (2) 479-488
  • 50 Cox EM, Sagan SM, Mortimer SA, Doudna JA, Sarnow P. Enhancement of hepatitis C viral RNA abundance by precursor miR-122 molecules. RNA 2013; 19 (12) 1825-1832
  • 51 Pedersen IM, Cheng G, Wieland S , et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007; 449 (7164) 919-922
  • 52 Murakami Y, Aly HH, Tajima A, Inoue I, Shimotohno K. Regulation of the hepatitis C virus genome replication by miR-199a. J Hepatol 2009; 50 (3) 453-460
  • 53 Friebe P, Lohmann V, Krieger N, Bartenschlager R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J Virol 2001; 75 (24) 12047-12057
  • 54 Esquela-Kerscher A, Trang P, Wiggins JF , et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7 (6) 759-764
  • 55 Schubert M, Spahn M, Kneitz S , et al. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer. PLoS ONE 2013; 8 (6) e65064
  • 56 Teng GG, Wang WH, Dai Y, Wang SJ, Chu YX, Li J. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS ONE 2013; 8 (2) e56709
  • 57 Cheng JC, Yeh YJ, Tseng CP , et al. Let-7b is a novel regulator of hepatitis C virus replication. Cell Mol Life Sci 2012; 69 (15) 2621-2633
  • 58 Elmén J, Lindow M, Schütz S , et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452 (7189) 896-899
  • 59 Hsu SH, Wang B, Kota J , et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122 (8) 2871-2883
  • 60 Tsai WC, Hsu SD, Hsu CS , et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122 (8) 2884-2897
  • 61 Henke JI, Goergen D, Zheng J , et al. MicroRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 2008; 27 (24) 3300-3310