Semin Respir Crit Care Med 2015; 36(01): 056-073
DOI: 10.1055/s-0034-1398387
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Clinical Management of Infections Caused by Enterobacteriaceae that Express Extended-Spectrum β-Lactamase and AmpC Enzymes

Patrick N. A. Harris
1   Infection and Immunity Theme, University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
02 February 2015 (online)

Abstract

The production of β-lactamase is the principal mechanism by which gram-negative bacteria resist the action of β-lactam antibiotics. In recent decades, there has been an alarming explosion in the diversity, global dissemination, host range, and spectrum of activity of β-lactamases. This has been most clearly reflected by the marked increase in infections caused by bacteria that express extended-spectrum β-lactamases (ESBLs). Some bacterial species possess chromosomally encoded broad-spectrum cephalosporinases (AmpC) that may be expressed at high level by mutational loss of regulatory genes and are intrinsic in some common Enterobacteriaceae, such as Enterobacter spp. Recently, high-level AmpC production has also been seen in new species such as Escherichia coli via plasmid acquisition. ESBL and AmpC producers present challenges to susceptibility testing and the selection of appropriate antimicrobial therapy. This review describes the current global epidemiology of ESBL producers, examines reported risk factors for infections caused by gram-negative bacteria that express ESBL or AmpC enzymes, and discusses the options for antimicrobial therapy, including “re-discovered” older antibiotics and novel agents in development.

 
  • References

  • 1 Fevre C, Jbel M, Passet V, Weill FX, Grimont PA, Brisse S. Six groups of the OXY beta-Lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrob Agents Chemother 2005; 49 (8) 3453-3462
  • 2 Hall BG, Barlow M. Structure-based phylogenies of the serine beta-lactamases. J Mol Evol 2003; 57 (3) 255-260
  • 3 Hall BG, Salipante SJ, Barlow M. The metallo-beta-lactamases fall into two distinct phylogenetic groups. J Mol Evol 2003; 57 (3) 249-254
  • 4 Bhullar K, Waglechner N, Pawlowski A , et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 2012; 7 (4) e34953
  • 5 Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940; 146 (3713) 837
  • 6 Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009; 22 (1) 161-182
  • 7 Bush K. Proliferation and significance of clinically relevant β-lactamases. Ann N Y Acad Sci 2013; 1277: 84-90
  • 8 Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983; 11 (6) 315-317
  • 9 Mushtaq S, Livermore DM. AmpC induction by ceftaroline. J Antimicrob Chemother 2010; 65 (3) 586-588
  • 10 Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39 (6) 1211-1233
  • 11 Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289 (1036) 321-331
  • 12 Lee JH, Bae IK, Lee SH. New definitions of extended-spectrum β-lactamase conferring worldwide emerging antibiotic resistance. Med Res Rev 2012; 32 (1) 216-232
  • 13 Giske CG, Sundsfjord AS, Kahlmeter G , et al. Redefining extended-spectrum beta-lactamases: balancing science and clinical need. J Antimicrob Chemother 2009; 63 (1) 1-4
  • 14 Bush K, Jacoby GA, Amicosante G , et al. Comment on: Redefining extended-spectrum beta-lactamases: balancing science and clinical need. J Antimicrob Chemother 2009; 64 (1) 212-213 , author reply 213–215
  • 15 Corvec S, Prodhomme A, Giraudeau C, Dauvergne S, Reynaud A, Caroff N. Most Escherichia coli strains overproducing chromosomal AmpC beta-lactamase belong to phylogenetic group A. J Antimicrob Chemother 2007; 60 (4) 872-876
  • 16 Jacobs C, Frère J-M, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 1997; 88 (6) 823-832
  • 17 Macdougall C. Beyond susceptible and resistant, Part I: Treatment of infections due to gram-negative organisms with inducible β-lactamases. J Pediatr Pharmacol Ther 2011; 16 (1) 23-30
  • 18 Harris PN, Ferguson JK. Antibiotic therapy for inducible AmpC β-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides?. Int J Antimicrob Agents 2012; 40 (4) 297-305
  • 19 Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8 (4) 557-584
  • 20 Lodge JM, Minchin SD, Piddock LJ, Busby SJ. Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 1990; 272 (3) 627-631
  • 21 Lindberg F, Normark S. Common mechanism of ampC beta-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99 beta-lactamase gene. J Bacteriol 1987; 169 (2) 758-763
  • 22 Lindberg F, Westman L, Normark S. Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc Natl Acad Sci U S A 1985; 82 (14) 4620-4624
  • 23 Korfmann G, Sanders CC. ampG is essential for high-level expression of AmpC beta-lactamase in Enterobacter cloacae. Antimicrob Agents Chemother 1989; 33 (11) 1946-1951
  • 24 Mark BL, Vocadlo DJ, Oliver A. Providing β-lactams a helping hand: targeting the AmpC β-lactamase induction pathway. Future Microbiol 2011; 6 (12) 1415-1427
  • 25 Johnson JW, Fisher JF, Mobashery S. Bacterial cell-wall recycling. Ann N Y Acad Sci 2013; 1277 (1) 54-75
  • 26 Kaneko K, Okamoto R, Nakano R, Kawakami S, Inoue M. Gene mutations responsible for overexpression of AmpC beta-lactamase in some clinical isolates of Enterobacter cloacae. J Clin Microbiol 2005; 43 (6) 2955-2958
  • 27 Sanders Jr WE, Sanders CC. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev 1997; 10 (2) 220-241
  • 28 Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 1989; 17 (5) 316-321
  • 29 Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC beta-lactamases in the United States. Antimicrob Agents Chemother 2004; 48 (2) 533-537
  • 30 Sidjabat HE, Seah KY, Coleman L , et al. Expansive spread of IncI1 plasmids carrying blaCMY-2 amongst Escherichia coli. Int J Antimicrob Agents 2014; 44 (3) 203-208
  • 31 Reuland EA, Hays JP, de Jongh DM , et al. Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PLoS ONE 2014; 9 (3) e91396
  • 32 Freitas F, Machado E, Ribeiro TG, Novais Â, Peixe L. Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. Eur J Clin Microbiol Infect Dis 2014; 33 (4) 551-558
  • 33 Rodríguez-Baño J, Miró E, Villar M , et al. Colonisation and infection due to Enterobacteriaceae producing plasmid-mediated AmpC β-lactamases. J Infect 2012; 64 (2) 176-183
  • 34 Gude MJ, Seral C, Sáenz Y , et al. Molecular epidemiology, resistance profiles and clinical features in clinical plasmid-mediated AmpC-producing Enterobacteriaceae. Int J Med Microbiol 2013; 303 (8) 553-557
  • 35 Hanson ND. AmpC beta-lactamases: what do we need to know for the future?. J Antimicrob Chemother 2003; 52 (1) 2-4
  • 36 Jeong SH, Song W, Park MJ , et al. Boronic acid disk tests for identification of extended-spectrum beta-lactamase production in clinical isolates of Enterobacteriaceae producing chromosomal AmpC beta-lactamases. Int J Antimicrob Agents 2008; 31 (5) 467-471
  • 37 Miriagou V, Tzouvelekis LS, Villa L , et al. CMY-13, a novel inducible cephalosporinase encoded by an Escherichia coli plasmid. Antimicrob Agents Chemother 2004; 48 (8) 3172-3174
  • 38 Rodríguez-Martínez JM, Fernández-Echauri P, Fernández-Cuenca F, Diaz de Alba P, Briales A, Pascual A. Genetic characterization of an extended-spectrum AmpC cephalosporinase with hydrolysing activity against fourth-generation cephalosporins in a clinical isolate of Enterobacter aerogenes selected in vivo. J Antimicrob Chemother 2012; 67 (1) 64-68
  • 39 Denisuik AJ, Lagacé-Wiens PR, Pitout JD , et al; Canadian Antimicrobial Resistance Alliance. Molecular epidemiology of extended-spectrum β-lactamase-, AmpC β-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolated from Canadian hospitals over a 5 year period: CANWARD 2007-11. J Antimicrob Chemother 2013; 68 (Suppl. 01) i57-i65
  • 40 World Health Organisation. Antimicrobial Resistance Global Report on Surveillance. Geneva: WHO; 2014
  • 41 Ho PL, Chow KH, Lai EL, Lau EH, Cheng VC. Extended-spectrum-β-lactamase-positive Escherichia coli mainly adds to, rather than replaces, extended-spectrum-β-lactamase-negative E. coli in causing bacteraemia in Hong Kong, 2000-10. J Antimicrob Chemother 2012; 67 (3) 778-780
  • 42 Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States: U.S. Department of Health and Human Services; 2013
  • 43 Turnidge J, Gottlieb T, Mitchell D , et al. Gram-Negative Survey 2012 Antimicrobial Susceptibility Report: Australian Group for Antimicrobial Resistance (AGAR); 2013
  • 44 Guzmán-Blanco M, Labarca JA, Villegas MV, Gotuzzo E ; Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis 2014; 18 (4) 421-433
  • 45 Lob SH, Badal RE, Bouchillon SK, Hawser SP, Hackel MA, Hoban DJ. Epidemiology and susceptibility of Gram-negative appendicitis pathogens: SMART 2008-2010. Surg Infect (Larchmt) 2013; 14 (2) 203-208
  • 46 Hawser SP, Bouchillon SK, Lascols C , et al. Susceptibility of European Escherichia coli clinical isolates from intra-abdominal infections, extended-spectrum β-lactamase occurrence, resistance distribution, and molecular characterization of ertapenem-resistant isolates (SMART 2008-2009). Clin Microbiol Infect 2012; 18 (3) 253-259
  • 47 Chen YH, Hsueh PR, Badal RE , et al. Antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region according to currently established susceptibility interpretive criteria. J Infect 2011; 62 (4) 280-291
  • 48 Ginn AN, Wiklendt AM, Zong Z , et al. Prediction of major antibiotic resistance in Escherichia coli and Klebsiella pneumoniae in Singapore, USA and China using a limited set of gene targets. Int J Antimicrob Agents 2014; 43 (6) 563-565
  • 49 Sheng WH, Badal RE, Hsueh PR ; SMART Program. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother 2013; 57 (7) 2981-2988
  • 50 Pitout JD. Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 2010; 70 (3) 313-333
  • 51 Chen LF, Freeman JT, Nicholson B , et al. Widespread dissemination of CTX-M-15 genotype extended-spectrum-β-lactamase-producing enterobacteriaceae among patients presenting to community hospitals in the southeastern United States. Antimicrob Agents Chemother 2014; 58 (2) 1200-1202
  • 52 Petty NK, Ben Zakour NL, Stanton-Cook M , et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A 2014; 111 (15) 5694-5699
  • 53 Rodríguez-Baño J, Navarro MD, Romero L , et al. Bacteremia due to extended-spectrum beta -lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 2006; 43 (11) 1407-1414
  • 54 Doi Y, Adams J, O'Keefe A, Quereshi Z, Ewan L, Paterson DL. Community-acquired extended-spectrum beta-lactamase producers, United States. Emerg Infect Dis 2007; 13 (7) 1121-1123
  • 55 Doi Y, Park YS, Rivera JI , et al. Community-associated extended-spectrum β-lactamase-producing Escherichia coli infection in the United States. Clin Infect Dis 2013; 56 (5) 641-648
  • 56 Ben-Ami R, Rodríguez-Baño J, Arslan H , et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009; 49 (5) 682-690
  • 57 Ben-Ami R, Schwaber MJ, Navon-Venezia S , et al. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin Infect Dis 2006; 42 (7) 925-934
  • 58 Stuart RL, Kotsanas D, Webb B , et al. Prevalence of antimicrobial-resistant organisms in residential aged care facilities. Med J Aust 2011; 195 (9) 530-533
  • 59 Rogers BA, Ingram PR, Runnegar N , et al; Australasian Society for Infectious Diseases Clinical Research Network. Community-onset Escherichia coli infection resistant to expanded-spectrum cephalosporins in low-prevalence countries. Antimicrob Agents Chemother 2014; 58 (4) 2126-2134
  • 60 Solé M, Pitart C, Oliveira I , et al. Extended spectrum β-lactamase-producing Escherichia coli faecal carriage in Spanish travellers returning from tropical and subtropical countries. Clin Microbiol Infect 2014;
  • 61 Valenza G, Nickel S, Pfeifer Y , et al. Extended-spectrum-β-lactamase-producing Escherichia coli as intestinal colonizers in the German community. Antimicrob Agents Chemother 2014; 58 (2) 1228-1230
  • 62 Titelman E, Hasan CM, Iversen A , et al. Faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae is common 12 months after infection and is related to strain factors. Clin Microbiol Infect 2014; 20 (8) O508-O515
  • 63 Birgand G, Armand-Lefevre L, Lolom I, Ruppe E, Andremont A, Lucet JC. Duration of colonization by extended-spectrum β-lactamase-producing Enterobacteriaceae after hospital discharge. Am J Infect Control 2013; 41 (5) 443-447
  • 64 Paterson DL, Ko WC, Von Gottberg A , et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med 2004; 140 (1) 26-32
  • 65 Rodríguez-Baño J, Navarro MD, Romero L , et al. Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 2004; 42 (3) 1089-1094
  • 66 Fan NC, Chen HH, Chen CL , et al. Rise of community-onset urinary tract infection caused by extended-spectrum β-lactamase-producing Escherichia coli in children. J Microbiol Immunol Infect 2014; 47 (5) 399-405
  • 67 Kang CI, Kim SH, Kim DM , et al. Risk factors for and clinical outcomes of bloodstream infections caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2004; 25 (10) 860-867
  • 68 Tumbarello M, Spanu T, Sanguinetti M , et al. Bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother 2006; 50 (2) 498-504
  • 69 Park YS, Bae IK, Kim J , et al. Risk factors and molecular epidemiology of community-onset extended-spectrum β-lactamase-producing Escherichia coli bacteremia. Yonsei Med J 2014; 55 (2) 467-475
  • 70 Vodovar D, Marcadé G, Rousseau H , et al. Predictive factors for extended-spectrum beta-lactamase producing Enterobacteriaceae causing infection among intensive care unit patients with prior colonization. Infection 2014; 42 (4) 743-748
  • 71 Du B, Long Y, Liu H , et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med 2002; 28 (12) 1718-1723
  • 72 Kim YK, Pai H, Lee HJ , et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 2002; 46 (5) 1481-1491
  • 73 Martínez JA, Aguilar J, Almela M , et al. Prior use of carbapenems may be a significant risk factor for extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella spp. in patients with bacteraemia. J Antimicrob Chemother 2006; 58 (5) 1082-1085
  • 74 Freeman JT, McBride SJ, Nisbet MS , et al. Bloodstream infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae at a tertiary care hospital in New Zealand: risk factors and outcomes. Int J Infect Dis 2012; 16 (5) e371-e374
  • 75 Wener KM, Schechner V, Gold HS, Wright SB, Carmeli Y. Treatment with fluoroquinolones or with beta-lactam-beta-lactamase inhibitor combinations is a risk factor for isolation of extended-spectrum-beta-lactamase-producing Klebsiella species in hospitalized patients. Antimicrob Agents Chemother 2010; 54 (5) 2010-2016
  • 76 Johnson SW, Anderson DJ, May DB, Drew RH. Utility of a clinical risk factor scoring model in predicting infection with extended-spectrum β-lactamase-producing enterobacteriaceae on hospital admission. Infect Control Hosp Epidemiol 2013; 34 (4) 385-392
  • 77 Slekovec C, Bertrand X, Leroy J, Faller JP, Talon D, Hocquet D. Identifying patients harboring extended-spectrum-β-lactamase-producing Enterobacteriaceae on hospital admission is not that simple. Antimicrob Agents Chemother 2012; 56 (4) 2218-2219 , author reply 2220
  • 78 Ha YE, Kang CI, Cha MK , et al. Epidemiology and clinical outcomes of bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli in patients with cancer. Int J Antimicrob Agents 2013; 42 (5) 403-409
  • 79 Kang CI, Chung DR, Ko KS, Peck KR, Song JH ; Korean Network for Study of Infectious Diseases. Risk factors for infection and treatment outcome of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. Ann Hematol 2012; 91 (1) 115-121
  • 80 Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001; 32 (8) 1162-1171
  • 81 MacVane SH, Tuttle LO, Nicolau DP. Impact of extended-spectrum β-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. J Hosp Med 2014; 9 (4) 232-238
  • 82 Lee S, Song Y, Cho SH, Kwon KT. Impact of extended-spectrum beta-lactamase on acute pyelonephritis treated with empirical ceftriaxone. Microb Drug Resist 2014; 20 (1) 39-44
  • 83 Stewardson A, Fankhauser C, De Angelis G , et al. Burden of bloodstream infection caused by extended-spectrum β-lactamase-producing enterobacteriaceae determined using multistate modeling at a Swiss University Hospital and a nationwide predictive model. Infect Control Hosp Epidemiol 2013; 34 (2) 133-143
  • 84 Tumbarello M, Spanu T, Di Bidino R , et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010; 54 (10) 4085-4091
  • 85 Tumbarello M, Sanguinetti M, Montuori E , et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 2007; 51 (6) 1987-1994
  • 86 Hyle EP, Lipworth AD, Zaoutis TE, Nachamkin I, Bilker WB, Lautenbach E. Impact of inadequate initial antimicrobial therapy on mortality in infections due to extended-spectrum beta-lactamase-producing enterobacteriaceae: variability by site of infection. Arch Intern Med 2005; 165 (12) 1375-1380
  • 87 Apisarnthanarak A, Mundy LM. Prevalence, treatment, and outcome of infection due to extended-spectrum Beta-lactamase-producing microorganisms. Infect Control Hosp Epidemiol 2006; 27 (3) 326-327
  • 88 To KK, Lo WU, Chan JF, Tse H, Cheng VC, Ho PL. Clinical outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteremia in an area with high endemicity. Int J Infect Dis 2013; 17 (2) e120-e124
  • 89 Frakking FN, Rottier WC, Dorigo-Zetsma JW , et al. Appropriateness of empirical treatment and outcome in bacteremia caused by extended-spectrum-β-lactamase-producing bacteria. Antimicrob Agents Chemother 2013; 57 (7) 3092-3099
  • 90 Wu UI, Chen WC, Yang CS , et al. Ertapenem in the treatment of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli: a propensity score analysis. Int J Infect Dis 2012; 16 (1) e47-e52
  • 91 Chaubey VP, Pitout JD, Dalton B , et al. Clinical outcome of empiric antimicrobial therapy of bacteremia due to extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. BMC Res Notes 2010; 3: 116
  • 92 Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 2007; 60 (5) 913-920
  • 93 Smith CE, Tillman BS, Howell AW, Longfield RN, Jorgensen JH. Failure of ceftazidime-amikacin therapy for bacteremia and meningitis due to Klebsiella pneumoniae producing an extended-spectrum beta-lactamase. Antimicrob Agents Chemother 1990; 34 (6) 1290-1293
  • 94 Karas JA, Pillay DG, Muckart D, Sturm AW. Treatment failure due to extended spectrum beta-lactamase. J Antimicrob Chemother 1996; 37 (1) 203-204
  • 95 Rice LB, Yao JD, Klimm K, Eliopoulos GM, Moellering Jr RC. Efficacy of different beta-lactams against an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain in the rat intra-abdominal abscess model. Antimicrob Agents Chemother 1991; 35 (6) 1243-1244
  • 96 Paterson DL, Ko WC, Von Gottberg A , et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 2001; 39 (6) 2206-2212
  • 97 National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Tenth Informational Supplement (Aerobic Dilution) M100–S10. Wayne, PA: NCCLS; 2000
  • 98 Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty Third Informational Supplement. CLSI Document M100–S23. Wayne, PA: CLSI; 2013
  • 99 European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 3.1; 2013. Available at: http://www.eucast.org
  • 100 Kang CI, Cha MK, Kim SH , et al. Extended-spectrum cephalosporins and the inoculum effect in tests with CTX-M-type extended-spectrum β-lactamase-producing Escherichia coli: potential clinical implications of the revised CLSI interpretive criteria. Int J Antimicrob Agents 2014; 43 (5) 456-459
  • 101 Leclercq R, Cantón R, Brown DF , et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 2013; 19 (2) 141-160
  • 102 Livermore DM, Andrews JM, Hawkey PM , et al. Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly?. J Antimicrob Chemother 2012; 67 (7) 1569-1577
  • 103 Chow JW, Fine MJ, Shlaes DM , et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991; 115 (8) 585-590
  • 104 Kaye KS, Cosgrove S, Harris A, Eliopoulos GM, Carmeli Y. Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob Agents Chemother 2001; 45 (9) 2628-2630
  • 105 Choi SH, Lee JE, Park SJ , et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC beta-lactamase: implications for antibiotic use. Antimicrob Agents Chemother 2008; 52 (3) 995-1000
  • 106 Cosgrove SE, Kaye KS, Eliopoulous GM, Carmeli Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med 2002; 162 (2) 185-190
  • 107 Livermore DM, Brown DF, Quinn JP, Carmeli Y, Paterson DL, Yu VL. Should third-generation cephalosporins be avoided against AmpC-inducible Enterobacteriaceae?. Clin Microbiol Infect 2004; 10 (1) 84-85
  • 108 Pai H, Kang CI, Byeon JH , et al. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-beta-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48 (10) 3720-3728
  • 109 Sanders Jr WE, Tenney JH, Kessler RE. Efficacy of cefepime in the treatment of infections due to multiply resistant Enterobacter species. Clin Infect Dis 1996; 23 (3) 454-461
  • 110 Tamma PD, Girdwood SC, Gopaul R , et al. The use of cefepime for treating AmpC β-lactamase-producing Enterobacteriaceae. Clin Infect Dis 2013; 57 (6) 781-788
  • 111 Siedner MJ, Galar A, Guzmán-Suarez BB , et al. Cefepime vs other antibacterial agents for the treatment of Enterobacter species bacteremia. Clin Infect Dis 2014; 58 (11) 1554-1563
  • 112 Choi SH, Lee JE, Park SJ , et al. Prevalence, microbiology, and clinical characteristics of extended-spectrum beta-lactamase-producing Enterobacter spp., Serratia marcescens, Citrobacter freundii, and Morganella morganii in Korea. Eur J Clin Microbiol Infect Dis 2007; 26 (8) 557-561
  • 113 Gottlieb T, Wolfson C. Comparison of the MICs of cefepime for extended-spectrum beta-lactamase-producing and non-extended-spectrum beta-lactamase-producing strains of Enterobacter cloacae. J Antimicrob Chemother 2000; 46 (2) 330-331
  • 114 Bhat SV, Peleg AY, Lodise Jr TP , et al. Failure of current cefepime breakpoints to predict clinical outcomes of bacteremia caused by gram-negative organisms. Antimicrob Agents Chemother 2007; 51 (12) 4390-4395
  • 115 Burgess DS, Hall II RG. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-ESBL producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis 2004; 49 (1) 41-46
  • 116 Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2001; 45 (12) 3548-3554
  • 117 Kang CI, Pai H, Kim SH , et al. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J Antimicrob Chemother 2004; 54 (6) 1130-1133
  • 118 Fernández-Cuenca F, Rodríguez-Martínez JM, Martínez-Martínez L, Pascual A. In vivo selection of Enterobacter aerogenes with reduced susceptibility to cefepime and carbapenems associated with decreased expression of a 40 kDa outer membrane protein and hyperproduction of AmpC beta-lactamase. Int J Antimicrob Agents 2006; 27 (6) 549-552
  • 119 Labombardi VJ, Rojtman A, Tran K. Use of cefepime for the treatment of infections caused by extended spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Diagn Microbiol Infect Dis 2006; 56 (3) 313-315
  • 120 Lee NY, Lee CC, Huang WH, Tsui KC, Hsueh PR, Ko WC. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis 2013; 56 (4) 488-495
  • 121 Chopra T, Marchaim D, Veltman J , et al. Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 2012; 56 (7) 3936-3942
  • 122 Nguyen HM, Shier KL, Graber CJ. Determining a clinical framework for use of cefepime and β-lactam/β-lactamase inhibitors in the treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2014; 69 (4) 871-880
  • 123 Rhodes NJ, Richardson CL, Heraty R , et al. Unacceptably high error rates in Vitek 2 testing of cefepime susceptibility in extended spectrum? lactamase producing Escherichia coli . Antimicrob Agents Chemother 2014; 58 (7) 3757-3761
  • 124 Lepeule R, Ruppé E, Le P , et al. Cefoxitin as an alternative to carbapenems in a murine model of urinary tract infection due to Escherichia coli harboring CTX-M-15-type extended-spectrum β-lactamase. Antimicrob Agents Chemother 2012; 56 (3) 1376-1381
  • 125 Doi A, Shimada T, Harada S, Iwata K, Kamiya T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int J Infect Dis 2013; 17 (3) e159-e163
  • 126 Yang CC, Li SH, Chuang FR , et al. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. BMC Infect Dis 2012; 12: 206
  • 127 Kiffer CR, Kuti JL, Eagye KJ, Mendes C, Nicolau DP. Pharmacodynamic profiling of imipenem, meropenem and ertapenem against clinical isolates of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. from Brazil. Int J Antimicrob Agents 2006; 28 (4) 340-344
  • 128 Paterson DL, Ko WC, Von Gottberg A , et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis 2004; 39 (1) 31-37
  • 129 Collins VL, Marchaim D, Pogue JM , et al. Efficacy of ertapenem for treatment of bloodstream infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2012; 56 (4) 2173-2177
  • 130 Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8 (3) 159-166
  • 131 Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 2012; 67 (12) 2793-2803
  • 132 DeRyke CA, Banevicius MA, Fan HW, Nicolau DP. Bactericidal activities of meropenem and ertapenem against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a neutropenic mouse thigh model. Antimicrob Agents Chemother 2007; 51 (4) 1481-1486
  • 133 Bassetti M, Righi E, Fasce R , et al. Efficacy of ertapenem in the treatment of early ventilator-associated pneumonia caused by extended-spectrum beta-lactamase-producing organisms in an intensive care unit. J Antimicrob Chemother 2007; 60 (2) 433-435
  • 134 Fong JJ, Rosé L, Radigan EA. Clinical outcomes with ertapenem as a first-line treatment option of infections caused by extended-spectrum β-lactamase producing gram-negative bacteria. Ann Pharmacother 2012; 46 (3) 347-352
  • 135 Lye DC, Wijaya L, Chan J, Teng CP, Leo YS. Ertapenem for treatment of extended-spectrum beta-lactamase-producing and multidrug-resistant gram-negative bacteraemia. Ann Acad Med Singapore 2008; 37 (10) 831-834
  • 136 Lee NY, Huang WH, Tsui KC, Hsueh PR, Ko WC. Carbapenem therapy for bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae. Diagn Microbiol Infect Dis 2011; 70 (1) 150-153
  • 137 Huang SS, Lee MH, Leu HS. Bacteremia due to extended-spectrum beta-lactamase-producing Enterobacteriaceae other than Escherichia coli and Klebsiella. J Microbiol Immunol Infect 2006; 39: 496-502
  • 138 Qureshi ZA, Paterson DL, Pakstis DL , et al. Risk factors and outcome of extended-spectrum β-lactamase-producing Enterobacter cloacae bloodstream infections. Int J Antimicrob Agents 2011; 37 (1) 26-32
  • 139 Lee CC, Lee NY, Yan JJ , et al. Bacteremia due to extended-spectrum-beta-lactamase-producing Enterobacter cloacae: role of carbapenem therapy. Antimicrob Agents Chemother 2010; 54 (9) 3551-3556
  • 140 Elliott E, Brink AJ, van Greune J , et al. In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum beta-lactamase. Clin Infect Dis 2006; 42 (11) e95-e98
  • 141 Szabó D, Silveira F, Hujer AM , et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 2006; 50 (8) 2833-2835
  • 142 Suh B, Bae IK, Kim J, Jeong SH, Yong D, Lee K. Outbreak of meropenem-resistant Serratia marcescens comediated by chromosomal AmpC beta-lactamase overproduction and outer membrane protein loss. Antimicrob Agents Chemother 2010; 54 (12) 5057-5061
  • 143 Skurnik D, Lasocki S, Bremont S , et al. Development of ertapenem resistance in a patient with mediastinitis caused by Klebsiella pneumoniae producing an extended-spectrum beta-lactamase. J Med Microbiol 2010; 59 (Pt 1) 115-119
  • 144 Guillon H, Tande D, Mammeri H. Emergence of ertapenem resistance in an Escherichia coli clinical isolate producing extended-spectrum beta-lactamase AmpC. Antimicrob Agents Chemother 2011; 55 (9) 4443-4446
  • 145 Mammeri H, Nordmann P, Berkani A, Eb F. Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiol Lett 2008; 282 (2) 238-240
  • 146 European Committee on Antimicrobial Susceptibility Testing. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. 2012. Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Consultation/ (Accessed June 2014)
  • 147 Lister PD. Beta-lactamase inhibitor combinations with extended-spectrum penicillins: factors influencing antibacterial activity against enterobacteriaceae and Pseudomonas aeruginosa. Pharmacotherapy 2000; 20 (9, Pt 2) 213S-218S , discussion 224S–228S
  • 148 Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18 (4) 657-686
  • 149 Pagani L, Migliavacca R, Luzzaro F , et al. Comparative activity of piperacillin/tazobactam against clinical isolates of extended-spectrum beta-lactamase-producing Enterobacteriaceae. Chemotherapy 1998; 44 (6) 377-384
  • 150 Canoui E, Tankovic J, Bige N, Alves M, Offenstadt G. Which proportion of extended-spectrum beta-lactamase producing strains could be treated by non-carbapenem beta-lactams?. Med Mal Infect 2014; 44 (5) 235-237
  • 151 López-Cerero L, Picón E, Morillo C , et al. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates. Clin Microbiol Infect 2010; 16 (2) 132-136
  • 152 Craig WA, Bhavnani SM, Ambrose PG. The inoculum effect: fact or artifact?. Diagn Microbiol Infect Dis 2004; 50 (4) 229-230
  • 153 Docobo-Pérez F, López-Cerero L, López-Rojas R , et al. Inoculum effect on the efficacies of amoxicillin-clavulanate, piperacillin-tazobactam, and imipenem against extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing Escherichia coli in an experimental murine sepsis model. Antimicrob Agents Chemother 2013; 57 (5) 2109-2113
  • 154 Harada Y, Morinaga Y, Kaku N , et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect 2014; 20 (11) 831-839 [epub ahead of print]
  • 155 Thauvin-Eliopoulos C, Tripodi MF, Moellering Jr RC, Eliopoulos GM. Efficacies of piperacillin-tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 1997; 41 (5) 1053-1057
  • 156 Akhan S, Coskunkan F, Tansel O, Vahaboglu H. Conjugative resistance to tazobactam plus piperacillin among extended-spectrum beta-lactamase-producing nosocomial Klebsiella pneumoniae. Scand J Infect Dis 2001; 33 (7) 512-515
  • 157 Perez F, Bonomo RA. Can we really use ß-lactam/ß-lactam inhibitor combinations for the treatment of infections caused by extended-spectrum ß-lactamase-producing bacteria?. Clin Infect Dis 2012; 54 (2) 175-177
  • 158 Livermore DM, Hope R, Mushtaq S, Warner M. Orthodox and unorthodox clavulanate combinations against extended-spectrum beta-lactamase producers. Clin Microbiol Infect 2008; 14 (Suppl. 01) 189-193
  • 159 Paterson DL, Singh N, Gayowski T, Marino IR. Fatal infection due to extended-spectrum beta-lactamase-producing Escherichia coli: implications for antibiotic choice for spontaneous bacterial peritonitis. Clin Infect Dis 1999; 28 (3) 683-684
  • 160 Zimhony O, Chmelnitsky I, Bardenstein R , et al. Endocarditis caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: emergence of resistance to ciprofloxacin and piperacillin-tazobactam during treatment despite initial susceptibility. Antimicrob Agents Chemother 2006; 50 (9) 3179-3182
  • 161 Essack SY. Treatment options for extended-spectrum beta-lactamase-producers. FEMS Microbiol Lett 2000; 190 (2) 181-184
  • 162 Gavin PJ, Suseno MT, Thomson Jr RB , et al. Clinical correlation of the CLSI susceptibility breakpoint for piperacillin- tazobactam against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella species. Antimicrob Agents Chemother 2006; 50 (6) 2244-2247
  • 163 Apisarnthanarak A, Kiratisin P, Saifon P, Kitphati R, Dejsirilert S, Mundy LM. Risk factors for and outcomes of healthcare-associated infection due to extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumoniae in Thailand. Infect Control Hosp Epidemiol 2007; 28 (7) 873-876
  • 164 Kang CI, Park SY, Chung DR, Peck KR, Song JH. Piperacillin-tazobactam as an initial empirical therapy of bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J Infect 2012; 64 (5) 533-534
  • 165 Peralta G, Lamelo M, Alvarez-García P , et al; SEMI-BLEE STUDY GROUP. Impact of empirical treatment in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. bacteremia. A multicentric cohort study. BMC Infect Dis 2012; 12: 245
  • 166 Rodríguez-Baño J, Navarro MD, Retamar P, Picón E, Pascual Á ; Extended-Spectrum Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 2012; 54 (2) 167-174
  • 167 Retamar P, López-Cerero L, Muniain MA, Pascual Á, Rodríguez-Baño J ; ESBL-REIPI/GEIH Group. Impact of the MIC of piperacillin-tazobactam on the outcome of patients with bacteremia due to extended-spectrum-β-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 2013; 57 (7) 3402-3404
  • 168 Gutiérrez-Gutiérrez B, Salamanca E, Pérez-Galera S , et al. Assessment of Beta-Lactam/Beta-Lactamase Inhibitor Combinations for the Treatment of Bacteraemia Due to Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae: The INCREMENT Project. Washington, DC: ICAAC; 2014
  • 169 Felton TW, Roberts JA, Lodise TP , et al. Individualization of piperacillin dosing for critically ill patients: dosing software to optimize antimicrobial therapy. Antimicrob Agents Chemother 2014; 58 (7) 4094-4102
  • 170 Carlier M, Carrette S, Roberts JA , et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used?. Crit Care 2013; 17 (3) R84
  • 171 Dulhunty JM, Roberts JA, Davis JS , et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis 2013; 56 (2) 236-244
  • 172 Bush K, Macalintal C, Rasmussen BA, Lee VJ, Yang Y. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob Agents Chemother 1993; 37 (4) 851-858
  • 173 Akova M, Yang Y, Livermore DM. Interactions of tazobactam and clavulanate with inducibly- and constitutively-expressed Class I beta-lactamases. J Antimicrob Chemother 1990; 25 (2) 199-208
  • 174 Power P, Galleni M, Ayala JA, Gutkind G. Biochemical and molecular characterization of three new variants of AmpC beta-lactamases from Morganella morganii. Antimicrob Agents Chemother 2006; 50 (3) 962-967
  • 175 Marcos M, Iñurrieta A, Soriano A , et al. Effect of antimicrobial therapy on mortality in 377 episodes of Enterobacter spp. bacteraemia. J Antimicrob Chemother 2008; 62 (2) 397-403
  • 176 Schwaber MJ, Graham CS, Sands BE, Gold HS, Carmeli Y. Treatment with a broad-spectrum cephalosporin versus piperacillin-tazobactam and the risk for isolation of broad-spectrum cephalosporin-resistant Enterobacter species. Antimicrob Agents Chemother 2003; 47 (6) 1882-1886
  • 177 Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 2010; 10 (1) 43-50
  • 178 de Cueto M, López L, Hernández JR, Morillo C, Pascual A. In vitro activity of fosfomycin against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: comparison of susceptibility testing procedures. Antimicrob Agents Chemother 2006; 50 (1) 368-370
  • 179 Nakamura T, Komatsu M, Yamasaki K , et al. Susceptibility of various oral antibacterial agents against extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae. J Infect Chemother 2014; 20 (1) 48-51
  • 180 Morfín-Otero R, Mendoza-Olazarán S, Silva-Sánchez J , et al. Characterization of Enterobacteriaceae isolates obtained from a tertiary care hospital in Mexico, which produces extended-spectrum β-lactamase. Microb Drug Resist 2013; 19 (5) 378-383
  • 181 Gupta V, Rani H, Singla N, Kaistha N, Chander J. Determination of Extended-Spectrum β-Lactamases and AmpC Production in Uropathogenic Isolates of Escherichia coli and Susceptibility to Fosfomycin. J Lab Physicians 2013; 5 (2) 90-93
  • 182 Hutley EJ, Chand MA, Hounsome G, Kelsey MC. Fosfomycin: an oral agent for urinary infection caused by extended spectrum beta-lactamase producing organisms. J Infect 2010; 60 (4) 308-309
  • 183 Auer S, Wojna A, Hell M. Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 2010; 54 (9) 4006-4008
  • 184 Wilson DT, May DB. Potential role of fosfomycin in the treatment of community-acquired lower urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Am J Ther 2013; 20 (6) 685-690
  • 185 Senol S, Tasbakan M, Pullukcu H , et al. Carbapenem versus fosfomycin tromethanol in the treatment of extended-spectrum beta-lactamase-producing Escherichia coli-related complicated lower urinary tract infection. J Chemother 2010; 22 (5) 355-357
  • 186 Gardiner BJ, Mahony AA, Ellis AG , et al. Is fosfomycin a potential treatment alternative for multidrug-resistant gram-negative prostatitis?. Clin Infect Dis 2014; 58 (4) e101-e105
  • 187 Rodríguez-Avial C, Rodríguez-Avial I, Hernández E, Picazo JJ. Increasing prevalence of fosfomycin resistance in extended-spectrum-beta-lactamase-producing Escherichia coli urinary isolates (2005-2009-2011) [in Spanish]. Rev Esp Quimioter 2013; 26 (1) 43-46
  • 188 Ellington MJ, Livermore DM, Pitt TL, Hall LM, Woodford N. Mutators among CTX-M beta-lactamase-producing Escherichia coli and risk for the emergence of fosfomycin resistance. J Antimicrob Chemother 2006; 58 (4) 848-852
  • 189 Lee SY, Park YJ, Yu JK , et al. Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J Antimicrob Chemother 2012; 67 (12) 2843-2847
  • 190 Corvec S, Furustrand Tafin U, Betrisey B, Borens O, Trampuz A. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-β-lactamase-producing Escherichia coli in a foreign-body infection model. Antimicrob Agents Chemother 2013; 57 (3) 1421-1427
  • 191 Lee WS, Wang FD, Shieh YH, Teng SO, Ou TY. Lemierre syndrome complicating multiple brain abscesses caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae cured by fosfomycin and meropenem combination therapy. J Microbiol Immunol Infect 2012; 45 (1) 72-74
  • 192 Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 2008; 46 (7) 1069-1077
  • 193 Silva-Sanchez J, Reyna-Flores F, Velazquez-Meza ME, Rojas-Moreno T, Benitez-Diaz A, Sanchez-Perez A ; Study Group. In vitro activity of tigecycline against extended-spectrum β-lactamase-producing Enterobacteriaceae and MRSA clinical isolates from Mexico: a multicentric study. Diagn Microbiol Infect Dis 2011; 70 (2) 270-273
  • 194 Geerlings SE, van Donselaar-van der Pant KA, Keur I. Successful treatment with tigecycline of two patients with complicated urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. J Antimicrob Chemother 2010; 65 (9) 2048-2049
  • 195 Cho SY, Kang CI, Chung DR, Peck KR, Song JH, Jang JH. Breakthrough bacteremia due to extended-spectrum-β-lactamase-producing Klebsiella pneumoniae during combination therapy with colistin and tigecycline. Antimicrob Agents Chemother 2012; 56 (9) 4994-4995 , author reply 4996
  • 196 Chen PL, Yan JJ, Wu CJ , et al. Salvage therapy with tigecycline for recurrent infection caused by ertapenem-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis 2010; 68 (3) 312-314
  • 197 Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 2012; 54 (12) 1699-1709
  • 198 Neu HC. Mecillinam—an amidino penicillin which acts synergistically with other β-lactam compounds. J Antimicrob Chemother 1977; 3 (Suppl B ): 43-52
  • 199 Gupta K, Hooton TM, Naber KG , et al; Infectious Diseases Society of America; European Society for Microbiology and Infectious Diseases. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 2011; 52 (5) e103-e120
  • 200 Brenwald NP, Andrews J, Fraise AP. Activity of mecillinam against AmpC beta-lactamase-producing Escherichia coli. J Antimicrob Chemother 2006; 58 (1) 223-224
  • 201 Lampri N, Galani I, Poulakou G , et al. Mecillinam/clavulanate combination: a possible option for the treatment of community-acquired uncomplicated urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. J Antimicrob Chemother 2012; 67 (10) 2424-2428
  • 202 Wootton M, Walsh TR, Macfarlane L, Howe RA. Activity of mecillinam against Escherichia coli resistant to third-generation cephalosporins. J Antimicrob Chemother 2010; 65 (1) 79-81
  • 203 Sougakoff W, Jarlier V. Comparative potency of mecillinam and other β-lactam antibiotics against Escherichia coli strains producing different β-lactamases. J Antimicrob Chemother 2000; 46 (Suppl. 01) 9-14
  • 204 Titelman E, Iversen A, Kalin M, Giske CG. Efficacy of pivmecillinam for treatment of lower urinary tract infection caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Microb Drug Resist 2012; 18 (2) 189-192
  • 205 Poulsen HO, Johansson A, Granholm S, Kahlmeter G, Sundqvist M. High genetic diversity of nitrofurantoin- or mecillinam-resistant Escherichia coli indicates low propensity for clonal spread. J Antimicrob Chemother 2013; 68 (9) 1974-1977
  • 206 Rodriguez-Villalobos H, Malaviolle V, Frankard J, de Mendonça R, Nonhoff C, Struelens MJ. In vitro activity of temocillin against extended spectrum beta-lactamase-producing Escherichia coli. J Antimicrob Chemother 2006; 57 (4) 771-774
  • 207 Livermore DM, Hope R, Fagan EJ, Warner M, Woodford N, Potz N. Activity of temocillin against prevalent ESBL- and AmpC-producing Enterobacteriaceae from south-east England. J Antimicrob Chemother 2006; 57 (5) 1012-1014
  • 208 Balakrishnan I, Awad-El-Kariem FM, Aali A , et al. Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2011; 66 (11) 2628-2631
  • 209 Fournier D, Chirouze C, Leroy J , et al. Alternatives to carbapenems in ESBL-producing Escherichia coli infections. Med Mal Infect 2013; 43 (2) 62-66
  • 210 Tasbakan MI, Pullukcu H, Sipahi OR, Yamazhan T, Ulusoy S. Nitrofurantoin in the treatment of extended-spectrum β-lactamase-producing Escherichia coli-related lower urinary tract infection. Int J Antimicrob Agents 2012; 40 (6) 554-556
  • 211 Endimiani A, Luzzaro F, Perilli M , et al. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis 2004; 38 (2) 243-251
  • 212 Farrell DJ, Sader HS, Flamm RK, Jones RN. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents 2014; 43 (6) 533-539
  • 213 Zhanel GG, Chung P, Adam H , et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014; 74 (1) 31-51
  • 214 Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 2014; 58 (4) 1835-1846
  • 215 Porres-Osante N, Dupont H, Torres C, Ammenouche N, de Champs C, Mammeri H. Avibactam activity against extended-spectrum AmpC β-lactamases. J Antimicrob Chemother 2014; 69 (6) 1715-1716
  • 216 Miossec C, Claudon M, Levasseur P, Black MT. The β-lactamase inhibitor avibactam (NXL104) does not induce ampC β-lactamase in Enterobacter cloacae. Infect Drug Resist 2013; 6: 235-240
  • 217 Flamm RK, Farrell DJ, Sader HS, Jones RN. Ceftazidime/avibactam activity tested against Gram-negative bacteria isolated from bloodstream, pneumonia, intra-abdominal and urinary tract infections in US medical centres (2012). J Antimicrob Chemother 2014; 69 (6) 1589-1598
  • 218 Glasner C, Albiger B, Buist G , et al; European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group. Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro Surveill 2013; 18 (28) 20525
  • 219 Molton JS, Tambyah PA, Ang BS, Ling ML, Fisher DA. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis 2013; 56 (9) 1310-1318
  • 220 Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med 2012; 18 (5) 263-272
  • 221 Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22 (4) 582-610
  • 222 Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol 2013; 4: 128