TumorDiagnostik & Therapie 2015; 36(01): 42-45
DOI: 10.1055/s-0034-1398920
Thieme Onkologie aktuell
© Georg Thieme Verlag KG Stuttgart · New York

Rolle der PET in der Diagnostik von Hirntumoren im Kindes- und Jugendalter

The role of PET in the diagnosis of paediatric brain tumours
M. Plotkin
1   Klinik für Nuklearmedizin, Charité – Universitätsmedizin Berlin
,
A. Guggemos
3   Klinik für Kinder- und Jugendmedizin, Kliniken der Stadt Köln
,
F. Grosse
2   Klinik für Pädiatrie m. S. Onkologie/Hämatologie, Charité – Universitätsmedizin Berlin
,
I. G. Steffen
1   Klinik für Nuklearmedizin, Charité – Universitätsmedizin Berlin
,
P. H. Driever
3   Klinik für Kinder- und Jugendmedizin, Kliniken der Stadt Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
20 February 2015 (online)

Zusammenfassung

Der Stellenwert der PET mit radioaktiv markierten Aminosäuren in der neuroonkologischen Diagnostik ist in vielen Studien validiert. Die Methode kann auch bei pädiatrischen Patienten zur Früherkennung von Rezidiv-/Resttumoren und vor allem zur Differenzierung eines vitalen Tumors von therapiebedingten Veränderungen eingesetzt werden. lm Rahmen einer prospektiven, multizentrischen Studie (FET PET 2010) soll die Genauigkeit der FET-PET in der Nachsorge von kindlichen Hirntumoren im Vergleich zum gegenwärtigen diagnostischen „Goldstandard“ MRT vergleichen werden.

Abstract

The value of amino acid PET in neurooncology was validated by numerous studies. This method might be useful in paediatric patients for early diagnosis of residual/recurrent tumours and especially for differentiation of the viable tumour from therapy-induced tissue changes. The aim of a multicentre prospective study (FET PET 2010) is to estimate the accuracy of FET-PET in the follow-up of paediatric brain tumours in comparison to the current diagnostic “gold standard” MRI.

 
  • Literatur

  • 1 Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 2003; 33: 148-162
  • 2 Brucher JM. Neuropathological diagnosis with stereotactic biopsies. Possibilities, difficulties and requirements. Acta Neurochir (Wien) 1993; 124: 37-39
  • 3 Byrne TN. Imaging of gliomas. Semin Oncol 1994; 21: 162-171
  • 4 Chamberlain M, Murovic J, Levin V. Absence of contrast enhancement on CT brain scans of patients with malignant gliomas. Neurology 1998; 38: 1371-1374
  • 5 De Salles AA, Brekhus SD, De Souza EC et al. Early postoperative appearance of radiofrequency lesions on magnetic resonance imaging. Neurosurgery 1995; 36: 932-936
  • 6 De Witte O, Levivier M, Violon P et al. Prognostic value positron emission tomography with 18F-fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 1996; 39: 470-476
  • 7 Di Chiro G, DeLaPaz RL, Brooks RA et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32: 1323-1329
  • 8 Dooms GC, Hecht S, Brant-Zawadzki M et al. Brain radiation lesions: MR imaging. Radiology 1986; 158: 149-155
  • 9 Ericson K, Lilja A, Bergstrom M et al. Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 1985; 9: 683-689
  • 10 Floeth FW, Pauleit D, Sabel M et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007; 48: 519-527
  • 11 Floeth FW, Pauleit D, Wittsack HJ et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005; 102: 318-327
  • 12 Friedman HS, Kerby T, Calvert H. Temozolamid and treatment of malignant gliomas. Clin Cancer Res 2000; 6: 2585-2597
  • 13 Glantz MJ, Hoffman JM, Coleman RE et al. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 1991; 29: 347-355
  • 14 Grosu AL, Weber WA. PET for radiation treatment planning of brain tumours. Radiother 2010; 96: 325-327
  • 15 Heiss P, Mayer S, Herz M et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F] fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999; 40: 1367-1373
  • 16 Herholz K, Pietrzyk U, Voges J et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 1993; 79: 853-858
  • 17 Herholz K, Holzer T, Bauer B et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50: 1316-1322
  • 18 Kaschten B, Stevenaert A, Sadzot B et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998; 39: 778-785
  • 19 Leeds NE, Jackson EF. Current imaging techniques for the evaluation of brain neoplasms. Curr Opin Oncol 1994; 6: 254-261
  • 20 Levivier M, Goldman S, Pirotte B et al. Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J Neurosurg 1995; 82: 445-452
  • 21 Lilja A, Bergstrom K, Hartvig P et al. Dynamic study of supratentorial gliomas with L-methyl-11C-methionine and positron emission tomography. AJNR Am J Neuroradiol 1985; 6: 505-514
  • 22 Mehrkens JH, Popperl G, Rachinger W et al. The positive predictive value of O-(2-[(18)F]fluoroethyl)-L: -tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 2008; 23: 23
  • 23 Messing-Junger AM, Floeth FW, Pauleit D et al. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 2002; 18: 445-449
  • 24 Morana G, Piccardo A, Milanaccio C et al. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med 2014; 55: 718-723
  • 25 Nelson SJ. Imaging of brain tumors after therapy. Neuroimaging Clin N Am 1999; 9: 801-819
  • 26 Ogawa T, Inugami A, Hatazawa J et al. Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol 1996; 17: 345-353
  • 27 Pafundi DH, Laack NN, Youland RS et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol 2013; 158: 1058-1067
  • 28 Pauleit D, Floeth F, Hamaher K et al. O-(2-[18F]fuoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 29 Pauleit D, Stoffels G, Bachofner A et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 2009; 36: 779-787
  • 30 Pauleit D, Stoffels G, Schaden W et al. PET with O-(2-18F-Fluoroethyl)-L-Tyrosine in peripheral tumors: first clinical results. J Nucl Med 2005; 46: 411-416
  • 31 Peet AC, Leach MO, Pinkerton CR et al. The development of functional imaging in the diagnosis, management and understanding of childhood brain tumours. Pediatr Blood Cancer 2005; 44: 103-113
  • 32 Piroth MD, Pinkawa M, Holy R et al. Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme – a dosimetric comparison. Radiat Oncol 2009; 4: 57
  • 33 Pirotte B, Levivier M, Morelli D et al. Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst 2005; 21: 294-300
  • 34 Pirotte BJ, Lubansu A, Massager N et al. Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr 2010; 5: 486-499
  • 35 Plotkin M, Blechschmidt C, Auf G et al. Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol 2010; 20: 2496-2502
  • 36 Plotkin M, Gneveckow U, Meier-Hauff K et al. 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperthermia 2006; 22: 319-325
  • 37 Plotkin M, Guggemos A, Steffen IG et al. Prospektive, multizentrische Studie zur Bedeutung der O-(2-[18F]Fluoroethyl)-L-Tyrosin Positronen-Emissions-Tomographie (FET-PET) in der Verlaufsbeurteilung von Hirntumoren im Kindes- und Jugendalter. (FET PET 2010). Der Nuklearmediziner 2011; 34: 125-129
  • 38 Popperl G, Goldbrunner R, Gildehaus FJ et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-1025
  • 39 Popperl G, Gotz C, Rachinger W et al. Serial O-(2-[(18)F]fluoroethyl)-L: -tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 2006; 33: 792-800
  • 40 Popperl G, Gotz C, Rachinger W et al. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470
  • 41 Popperl G, Kreth FW, Mehrkens JH et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942
  • 42 Preuss M, Werner P, Barthel H et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst 2014; [Epub ahead of print]
  • 43 Rachinger W, Goetz C, Popperl G et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurger 2005; 57: 505-511 discussion 505-511
  • 44 Rickhey M, Koelbl O, Eilles C et al. A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors. Strahlenther Onkol 2008; 184: 536-542
  • 45 Rickhey M, Moravek Z, Eilles C et al. 18F-FET-PET-based dose painting by numbers with protons. Strahlenther 2010; 186: 320-326
  • 46 Stockhammer F, Misch M, Koch A et al. Continuous low-dose temozolomide and celecoxib in recurrent glioblastoma. J Neurooncol 2010; 100: 407-415
  • 47 Tang G, Wang M, Tang X et al. Pharmkokinetics and radiation dosimetry estimation of O-(2-[18F] floroethyl)-L-tyrosine as oncologic PET tracer. Appl Radiat Isot 2003; 58: 219-225
  • 48 Thiele F, Ehmer J, Piroth MD et al. The quantification of dynamic FET PET imaging and correlation with the clinical outcome in patients with glioblastoma. Phys Med Biol 2009; 54: 5525-5539
  • 49 Tovi M, Lilja A, Bergstrom M et al. Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 1990; 31: 417-429
  • 50 Tsuyuguchi N, Sunada I, Iwai Y et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible?. J Neurosurg 2003; 98: 1056-1064
  • 51 Utriainen M, Metsahonkala L, Salmi TT et al. Metabolic characterization of childhood brain tumors: Comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 2002; 95: 1376-1386
  • 52 Weber W, Wester HJ, Grosu AL et al. O-(2-[18F] fluoroethyl)-L-tyrosine and L-[methyl-11C] methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27: 542-549
  • 53 Weckesser M, Langen KJ, Rickert CH et al. O-2-[18F]fluoroethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005; 32: 422-429
  • 54 Wester HJ, Herz M, Weber W et al. Synthesis and radiopharmacology of O-(2-[18F] fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999; 40: 205-212