Aktuelle Neurologie 2015; 42(03): 130-140
DOI: 10.1055/s-0035-1547268
Neues in der Neurologie
© Georg Thieme Verlag KG Stuttgart · New York

Was gibt es Neues zum Thema invasives Neuromonitoring?

Update on Invasive Neuromonitoring
J. B. Kuramatsu
,
H. B. Huttner
,
D. Staykov
Further Information

Publication History

Publication Date:
14 April 2015 (online)

Zusammenfassung

Die Überwachung der strukturellen und funktionellen Integrität des Zentralnervensystems und die Vermeidung von sekundären zerebralen Schäden stehen im Mittelpunkt der neurointensivmedizinischen Behandlung. Obwohl die engmaschige klinische Untersuchung hierbei eine zentrale Rolle spielt, sind der Beurteilbarkeit schwer betroffener analgosedierter und beatmeter Patienten Grenzen gesetzt. Bildgebende Verfahren erlauben die Darstellung struktureller Schäden und einiger funktioneller Parameter wie z. B. der zerebralen Perfusion, sind jedoch nur diskontinuierlich und mit einem verhältnismäßig großen personellen und apparativen Aufwand durchführbar. Vor diesem Hintergrund wurde eine Reihe invasiver apparativer Monitoringverfahren entwickelt, die kontinuierlich oder zumindest sehr engmaschig einen Einblick in die Veränderungen des intrakraniellen Drucks, des Sauerstoffpartialdrucks im Gehirn, des zerebralen Blutflusses, oder verschiedener metabolischer Parameter erlauben. Die vorliegende Übersicht fasst die relevanten sekundären Schädigungsmechanismen in Kürze zusammen und widmet sich im Wesentlichen der Darstellung verschiedener invasiver Neuromonitoring-Verfahren inklusive der aktuellen Datenlage aus klinischen Studien. Die praktische Relevanz des invasiven Neuromonitorings wird an Hand der aktuell veröffentlichten Konsensus-Empfehlungen, der internationalen multidisziplinären Kollaboration intensivmedizinischer Fachgesellschaften, vorgestellt.

Abstract

The evaluation of structural and functional integrity of the central nervous system, and prevention of secondary brain damage represents the main aim of neurocritical care. Clinical examinations are central to the management of severely injured sedated and ventilated patients, yet the value of clinical assessment is often very limited. Imaging modalities allow quantitation of structural damage and functional parameters, such a cerebral perfusion, but can only be carried out discontinuously and require great instrumental as well as personnel effort. In light of these difficulties, invasive monitoring devices have been developed, which allow continuous or at least highly frequent evaluation of changes in intracranial pressure, cerebral tissue oxygen, cerebral blood flow, and several metabolic parameters. The present review briefly summarizes the relevant mechanisms of secondary brain injury, focusing on invasive neuromonitoring techniques including available data from recent investigations. Moreover, the practical relevance of invasive neuromonitoring will be presented based on the recently published consensus statement of the international multidisciplinary collaboration of intensive care societies.

 
  • Literatur

  • 1 Dagal A, Lam AM. Cerebral blood flow and the injured brain: how should we monitor and manipulate it?. Curr Opin Anaesthesiol 2011; 24: 131-137
  • 2 Le Roux P, Menon DK, Citerio G et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40: 1189-1209
  • 3 Le Roux PD, Cooper J, Guntupalli KK et al. The critical care research networks experience. Neurocrit Care 2012; 16: 20-28
  • 4 Hemphill JC, Andrews P, De Georgia M. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol 2011; 7: 451-460
  • 5 Rincon F, Mayer SA. Neurocritical care: a distinct discipline?. Curr Opin Crit Care 2007; 13: 115-121
  • 6 Korbakis G, Bleck T. The Evolution of Neurocritical Care. Crit Care Clin 2014; 30: 657-671
  • 7 Suarez JI. Outcome in neurocritical care: advances in monitoring and treatment and effect of a specialized neurocritical care team. Crit Care Med 2006; 34: S232-S238
  • 8 Sarrafzadeh AS, Smoll NR, Unterberg AW. Lessons from the intracranial pressure-monitoring trial in patients with traumatic brain injury. World Neurosurg 2014; 82: e393-e395
  • 9 Le Roux P. Intracranial pressure after the BEST TRIP trial: a call for more monitoring. Curr Opin Crit Care 2014; 20: 141-147
  • 10 Diedler J, Czosnyka M. Merits and pitfalls of multimodality brain monitoring. Neurocrit Care 2010; 12: 313-316
  • 11 Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology 2001; 56: 1746-1748
  • 12 Hartings JA, Wilson JA, Hinzman JM et al. Spreading depression in continuous electroencephalography of brain trauma. Ann Neurol 2014; 76: 681-694
  • 13 Stocchetti N, Le Roux P, Vespa P et al. Clinical review: neuromonitoring – an update. Crit Care 2013; 17: 201
  • 14 Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 2014; 10: 44-58
  • 15 Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 2011; 17: 439-447
  • 16 Munch E, Weigel R, Schmiedek P et al. The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochir (Wien) 1998; 140: 1113-1119 discussion 1119–1120
  • 17 Stuart RM, Schmidt M, Kurtz P et al. Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit Care 2010; 12: 188-198
  • 18 Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury?. Br J Anaesth 2014; 112: 35-46
  • 19 Resnick DK, Marion DW, Carlier P. Outcome analysis of patients with severe head injuries and prolonged intracranial hypertension. J Trauma 1997; 42: 1108-1111
  • 20 Dizdarevic K, Hamdan A, Omerhodzic I et al. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg 2012; 114: 142-148
  • 21 Muzevic D, Splavski B. The Lund concept for severe traumatic brain injury. Cochrane Database Syst Rev 2013; 12: CD010193
  • 22 Bratton SL, Chestnut RM, Ghajar J et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma 2007; 24 (Suppl. 01) S59-S64
  • 23 Andrews PJ. Cerebral perfusion pressure and brain ischaemia: can one size fit all?. Crit Care 2005; 9: 638-639
  • 24 Alali AS, Fowler RA, Mainprize TG et al. Intracranial pressure monitoring in severe traumatic brain injury: results from the American College of Surgeons Trauma Quality Improvement Program. J Neurotrauma 2013; 30: 1737-1746
  • 25 Kosty JA, Leroux PD, Levine J et al. Brief report: a comparison of clinical and research practices in measuring cerebral perfusion pressure: a literature review and practitioner survey. Anesth Analg 2013; 117: 694-698
  • 26 Steiner LA, Czosnyka M, Piechnik SK et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 2002; 30: 733-738
  • 27 Staykov D, Schwab S. Clearing bloody cerebrospinal fluid: clot lysis, neuroendoscopy and lumbar drainage. Curr Opin Crit Care 2013; 19: 92-100
  • 28 Moradiya Y, Murthy SB, Newman-Toker DE et al. Intraventricular thrombolysis in intracerebral hemorrhage requiring ventriculostomy: a decade-long real-world experience. Stroke 2014; 45: 2629-2635
  • 29 Staykov D, Huttner HB, Struffert T et al. Intraventricular fibrinolysis and lumbar drainage for ventricular hemorrhage. Stroke 2009; 40: 3275-3280
  • 30 Huttner HB, Tognoni E, Bardutzky J et al. Influence of intraventricular fibrinolytic therapy with rt-PA on the long-term outcome of treated patients with spontaneous basal ganglia hemorrhage: a case-control study. Eur J Neurol 2008; 15: 342-349
  • 31 Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke 2009; 40: 1533-1538
  • 32 Ziai WC, Tuhrim S, Lane K et al. A multicenter, randomized, double-blinded, placebo-controlled phase III study of Clot Lysis Evaluation of Accelerated Resolution of Intraventricular Hemorrhage (CLEAR III). Int J Stroke 2014; 9: 536-542
  • 33 Steiner LA, Coles JP, Johnston AJ et al. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke 2003; 34: 2404-2409
  • 34 Budohoski KP, Czosnyka M, Kirkpatrick PJ et al. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol 2013; 9: 152-163
  • 35 McHedlishvili G. Physiological mechanisms controlling cerebral blood flow. Stroke 1980; 11: 240-248
  • 36 Dagal A, Lam AM. Cerebral autoregulation and anesthesia. Curr Opin Anaesthesiol 2009; 22: 547-552
  • 37 Coles JP, Fryer TD, Coleman MR et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med 2007; 35: 568-578
  • 38 Stocchetti N, Maas AI, Chieregato A et al. Hyperventilation in head injury: a review. Chest 2005; 127: 1812-1827
  • 39 Jaeger M, Soehle M, Schuhmann MU et al. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke 2012; 43: 2097-2101
  • 40 Diedler J, Santos E, Poli S et al. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Crit Care 2014; 18: R51
  • 41 Czosnyka M, Smielewski P, Kirkpatrick P et al. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 1997; 41: 11-17 discussion 17–19
  • 42 Aries MJ, Czosnyka M, Budohoski KP et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012; 40: 2456-2463
  • 43 Rasulo FA, Girardini A, Lavinio A et al. Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage?. J Neurosurg Anesthesiol 2012; 24: 3-8
  • 44 Jaeger M, Schuhmann MU, Soehle M et al. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 2006; 34: 1783-1788
  • 45 Lazaridis C, Andrews CM. Brain tissue oxygenation, lactate-pyruvate ratio, and cerebrovascular pressure reactivity monitoring in severe traumatic brain injury: systematic review and viewpoint. Neurocrit Care 2014; 21: 345-355
  • 46 Wolf S, Vajkoczy P, Dengler J et al. Drift of the Bowman Hemedex(R) cerebral blood flow monitor between calibration cycles. Acta Neurochir Suppl 2012; 114: 187-190
  • 47 Keller E, Froehlich J, Muroi C et al. Neuromonitoring in intensive care: a new brain tissue probe for combined monitoring of intracranial pressure (ICP) cerebral blood flow (CBF) and oxygenation. Acta Neurochir Suppl 2011; 110: 217-220
  • 48 Keller E, Nadler A, Imhof HG et al. New methods for monitoring cerebral oxygenation and hemodynamics in patients with subarachnoid hemorrhage. Acta Neurochir Suppl 2002; 82: 87-92
  • 49 Martini RP, Deem S, Treggiari MM. Targeting brain tissue oxygenation in traumatic brain injury. Respir Care 2013; 58: 162-172
  • 50 Oddo M, Levine JM, Mackenzie L et al. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery 2011; 69: 1037-1045 discussion 1045
  • 51 Chen HI, Stiefel MF, Oddo M et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery 2011; 69: 53-63 discussion 63
  • 52 Nangunoori R, Maloney-Wilensky E, Stiefel M et al. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care 2012; 17: 131-138
  • 53 Bohman LE, Pisapia JM, Sanborn MR et al. Response of brain oxygen to therapy correlates with long-term outcome after subarachnoid hemorrhage. Neurocrit Care 2013; 19: 320-328
  • 54 Pascual JL, Georgoff P, Maloney-Wilensky E et al. Reduced brain tissue oxygen in traumatic brain injury: are most commonly used interventions successful?. J Trauma 2011; 70: 535-546
  • 55 Hecht N, Fiss I, Wolf S et al. Modified flow- and oxygen-related autoregulation indices for continuous monitoring of cerebral autoregulation. J Neurosci Methods 2011; 201: 399-403
  • 56 Dengler J, Frenzel C, Vajkoczy P et al. Cerebral tissue oxygenation measured by two different probes: challenges and interpretation. Intensive Care Med 2011; 37: 1809-1815
  • 57 Winkler MK, Chassidim Y, Lublinsky S et al. Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction. Epilepsia 2012; 53 (Suppl. 06) 22-30
  • 58 Woitzik J, Dreier JP, Hecht N et al. Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2012; 32: 203-212
  • 59 Woitzik J, Hecht N, Pinczolits A et al. Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology 2013; 80: 1095-1102
  • 60 Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 2014; 15: 379-393
  • 61 Hinzman JM, Andaluz N, Shutter LA et al. Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. Brain 2014; 137: 2960-2972
  • 62 Lad SP, Hegen H, Gupta G et al. Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 2012; 21: 30-41
  • 63 Yokobori S, Hosein K, Burks S et al. Biomarkers for the clinical differential diagnosis in traumatic brain injury – a systematic review. CNS Neurosci Ther 2013; 19: 556-565
  • 64 Hong CM, Tosun C, Kurland DB et al. Biomarkers as outcome predictors in subarachnoid hemorrhage – a systematic review. Biomarkers 2014; 19: 95-108
  • 65 Friedrich V, Flores R, Muller A et al. Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage. Brain Res 2010; 1354: 179-187
  • 66 Romano JG, Rabinstein AA, Arheart KL et al. Microemboli in aneurysmal subarachnoid hemorrhage. J Neuroimaging 2008; 18: 396-401
  • 67 Schubert GA, Seiz M, Hegewald AA et al. Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study. J Neurotrauma 2009; 26: 2225-2231
  • 68 Goodman JC, Robertson CS. Microdialysis: is it ready for prime time?. Curr Opin Crit Care 2009; 15: 110-117
  • 69 Hillered L, Persson L, Nilsson P et al. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care 2006; 12: 112-118
  • 70 Hutchinson PJ, O’Connell MT, Rothwell NJ et al. Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma 2007; 24: 1545-1557
  • 71 Sarrafzadeh A, Copin JC, Bengualid DJ et al. Matrix metalloproteinase-9 concentration in the cerebral extracellular fluid of patients during the acute phase of aneurysmal subarachnoid hemorrhage. Neurol Res 2012; 34: 455-461
  • 72 Larach DB, Kofke WA, Le Roux P. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit Care 2011; 15: 609-622
  • 73 Timofeev I, Carpenter KL, Nortje J et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 2011; 134: 484-494