Horm Metab Res 2015; 47(06): 456-462
DOI: 10.1055/s-0035-1548944
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

Treatment of Patients with Obese Type 2 Diabetes with Tantalus-DIAMOND® Gastric Electrical Stimulation: Normal Triglycerides Predict Durable Effects for at Least 3 Years

H. E. Lebovitz
1   State University of New York Health Science Center at Brooklyn, Staten Islands, New York, USA
,
B. Ludvik
2   Medical University of Vienna, Internal Medicine: Vienna, Austria
3   Krankenanstalt Ruldolfstiftung, Wien, Austria
,
I. Yaniv
4   Metacure Ltd., Orangeburg, NY, USA
,
T. Schwartz
5   Biostatistics and Medical Device Research Division at GCP Clinical Studies, Tel Aviv, Israel
,
M. Zelewski
4   Metacure Ltd., Orangeburg, NY, USA
,
D. D. Gutterman
6   Medical College of Wisconsin, Milwaukee, WI, USA
,
Metacure Investigators › Author Affiliations
Further Information

Publication History

received 11 March 2015

accepted 27 March 2015

Publication Date:
16 April 2015 (online)

Abstract

The objectives of the present work are to evaluate long-term benefit of nonexcitatory gastric electrical stimulation (GES) by the DIAMOND® device on glycemic control and body weight in patients with type 2 diabetes inadequately controlled with oral agents and to determine the magnitude of the modulating effects of fasting plasma triglyceride (FTG) levels on these effects of GES. Sixty one patients with type 2 diabetes [HbA1c>7.0% (53 mmol/mol) to<10.5% (91 mmol/mol)] were implanted with the DIAMOND® GES device and treated with meal-mediated antral electrical stimulation for up to 36 months. The effects of baseline HbA1c and FTG on glycemic control, body weight, and systolic blood pressure were measured. GES reduced mean HbA1c by 0.9% and body weight by 5.7%. The effects were greater in patients with normal fasting plasma triglycerides (NTG) as compared to those with hypertriglyceridemia. The mean decrease in HbA1c in patients with NTG averaged 1.1% and was durable over 3 years of follow-up. ANCOVA indicated that improvement in HbA1c was a function of both baseline FTG group (p=0.02) and HbA1c (p=0.001) and their interaction (p=0.01). Marked weight loss (≥ 10%) was observed in a significant proportion of NTG patients by 12 months of treatment and persisted through the 3 years. GES improves glycemic control and reduces body weight by a triglyceride-dependent mechanism in patients with type 2 diabetes inadequately controlled on oral agents. It is postulated that this is through a gut-brain interaction that modulates effects on the liver and pancreatic islets.

 
  • References

  • 1 Bernard C. Lecons de Ohysiologie Experimentale Appliques a le Medecine. Paris: J.-B. Balliere; 1854
  • 2 Wang PYT, Caspi L, Lam CKL, Chari M, Li X, Light PE, Gutierrez-Juarez R, Ang M, Schwartz GJ, Lam TKT. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 2008; 452: 1012-1016
  • 3 Breen DM, Yue JTY, Rasmussen BA, Kokorovic A, Cheung GWC, Lam TKT. Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production. Diabetes 2011; 60: 3148-3153
  • 4 Rasmussen BA, Breen DM, Luo P, Cheung GWC, Yang CS, Sun B, Kokorvic A, Rong W, Lam TKT. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology 2012; 142: 834-843
  • 5 Breen DM, Rasmussen BA, Cote CD, Jackson M, Lam TKT. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes 2013; 62: 3005-3012
  • 6 Lam TKT. Neuronal regulation of homeostasis by nutrient sensing. Nat Med 2010; 16: 392-395
  • 7 Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404: 661-671
  • 8 Schwartz MW, Seeley RJ, Tschop MH, Woods SC, Morton GJ, Myers MG, D’Alessio D. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 2013; 503: 59-66
  • 9 Policker S, Lu H, Haddad W, Aviv R, Kliger A, Glasberg O, Goode P. Electrical stimulation of the gut for the treatment of type 2 diabetes: the role of automatic eating detection. J Diabetes Sci Technol 2008; 2: 906-912
  • 10 Peles S, Petersen J, Aviv R, Policker S, Abu-Hatoum O, Ben-Haim SA, Gutterman DD, Sengupta JN. Enhancement of antral contraction and vagal afferent signaling with synchronized electrical stimulation. Am J Physiol Gastrointest Liver Physiol 2003; 285: G577-G585
  • 11 Lebovitz HE, Ludvik B, Yaniv I, Haddad W, Schwartz T, Aviv R. Metacure Investigator Group . Fasting plasma triglycerides predict the glycaemic response to treatment of type 2 diabetes by gastric electrical stimulation. A novel lipotoxicity paradigm. Diabet Med 2013; 30: 687-693
  • 12 Sanmiguel CP, Conklin JL, Cunneen SA, Barnett P, Phillips EH, Kipnes M, Pilcher J, Soffer EE. Gastric electrical stimulation with the Tantalus® system in obese type 2 diabetes patients: effect on weight and glycemic control. J Diab Sci Technol 2009; 3: 964-970
  • 13 Bohdjalian A, Prager G, Rosak C, Weiner R, Jung R, Schramm M, Aviv R, Schindler K, Haddad W, Rosenthal N, Ludvik B. Improvement in glycemic control in morbidly obese type 2 diabetic subjects by gastric stimulation. Obes Surg 2009; 19: 1221-1227
  • 14 Wong SK, Kong AP, Osaki R, Ng VW, Chan LL, Lam CC, Lebovitz HE, Ng EK, Chan JC. A prospective case-control study to compare the efficacy of laparoscopic placement of gastric contraction modulator (TANTALUS II® vs. supplementary insulin treatment in obese T2DM patients. Diabetes Technol Therap (in press 2015)
  • 15 Primeaux SD, Barnes MJ, Braymer HD. Hypothalamic QRFP: regulation of foof intake and fat selection. Horm Metab Res 2013; 45: 967-974
  • 16 Sekar R, Chow BK. Role of secretin peptide family and their receptors in the hypothalamic control of energy homeostasis. Horm Metab Res 2013; 45: 945-954
  • 17 Tonon MC, Lanfray D, Castel H, Vaudry H, Morin F. Hypothalamic glucose-sensing: role of Glia-to-neuron signaling. Horm Metab Res 2013; 45: 955-959
  • 18 Knauf C, Drougard A, Fournel A, Duparc T, Valet P. Hypothalamic actions of apelin on energy metabolism: new insights on glucose homeostasis and metabolic disorders. Horm Metab Res 2013; 45: 928-934
  • 19 Kavalkova P, Touskova V, Roubicek T, Trachta P, Urbanova M, Drapalova J, Haluzikova D, Mraz M, Novak D, Matoulek M, Lacinova Z, Haluzik M. Serum preadipocyte factor-1 concentration in females with obesity and type 2 diabetes mellitus: the influence of very low calorie diet, acute hyperinsulinemia, and fenofibrate treatment. Horm Metab Res 2013; 45: 820-826
  • 20 Stirban A, Nandrean S, Gotting C, Stratmann B, Tschoepe D. Effects of n-3 polyunsaturated fatty acids (PUFAs) on circulating adiponectin and leptin in subjects with type 2 diabetes mellitus. Horm Metab Res 2014; 46: 490-492
  • 21 Berthoud HR, Patterson LM. Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa. Acta Anat 1996; 158: 123-131
  • 22 Timmermans J-P, Hens J, Adriaensen D. Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat Rec 2001; 262: 71-78
  • 23 Cheung GWC, Kokorovic A, Lam CKL, Chari M, Lam TKT. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 2009; 10: 99-109
  • 24 Cote CD, Zadeh-Tahmasebi M, Rasmussen BA, Duca FA, Lam TKT. Hormonal signaling in the gut. J Biol Chem 2014; 289: 11642-11649
  • 25 Lam TKT, Pocai A, Gutierrez-Juarez R, Obici S, Bryan J, Aguilar-Bryan L, Schwartz GJ, Rossetti L. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 2005; 11: 320-327
  • 26 Sanmiguel CP, Haddad W, Aviv R, Cunneen SA, Phillips EH, Kapella W, Soffer EE. The TANTALUSTM system for obesity: effect on gastric emptying of solids and ghrelin plasma levels. Obes Surg 2007; 17: 1-6
  • 27 Jones KL, Horowitz M, Wishart JM, Maddox AF, Harding PE, Chatterton BE. Relationships between gastric emptying, intragastric meal distribution and blood glucose concentrations in diabetes mellitus. J Nucl Med 1995; 36: 2220-2228
  • 28 Schvarcz E, Palmer M, Aman J, Horowitz M, Stridsberg M, Berne C. Physiological hyperglycemia slows gastric emptying in normal subjects and patients with insulin-dependent diabetes mellitus. Gastroenterology 1997; 113: 60-66
  • 29 Woerle H-J, Albrecht M, Linke R, Zschau S, Neumann C, Nicolaus M, Gerich J, Goke B, Schirra J. Importance of changes in gastric emptying for postprandial plasma glucose fluxes in healthy humans. Am J Physiol Endocrinol Metab 2008; 294: E103-E109
  • 30 Woerle HJ, Albreche M, Linke R, Zschau S, Neumann C, Nicolaus M, Gerich JE, Goke B, Schirra J. Impaired hyperglycemia-induced delay in gastric emptying in patients with type 1 diabetes deficient for islet amyloid polypeptide. Diabetes Care 2008; 31: 2325-2331
  • 31 Phillips LK, Rayner CK, Jones KL, Horowitz M. Measurement of gastric emptying in diabetes. J Diab Complicat 2014; 28: 894-903
  • 32 Kang ZF, Deng Y, Zhou Y, Fan RR, Chan JCN, Laybutt DR, Luzuriaga J, Xu G. Pharmacological reduction of NEFA restores the efficacy of incretin-based therapies through GLP-1 receptor signaling in the beta cell in mouse models of diabetes. Diabetologia 2013; 56: 423-433
  • 33 Roth JD, Erickson MR, Chen S, Parkes DG. GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. Brit J Pharmacol 2011; 166: 121-136
  • 34 Van de Woestijne AP, Monajemi H, Kalkhoven E, Visseren LJ. Adipose tissue dysfunction and hypertriglyceridemia: mechanisms and management. Obes Rev 2011; 12: 829-840
  • 35 Graner M, Pentikainen MO, Siren R, Nyman K, Lundbom J, Hakkarainen A, Lauerma K, Lundbom N, Nieminen MS, Taskinen MR. Electrocardiographic changes associated with insulin resistance. Nutr Metab Cardiovasc Dis 2014; 24: 315-320
  • 36 Tiehuis AM, van der Graaf Y, Mali WP, Vincken K, Muller M, Geerlings MI. SMART Study Group . Metabolic syndrome, prediabetes, and brain abnormalities on MRI in patients with manifest arterial disease: the SMART-MR study. Diabetes Care 2014; 37: 2515-2521
  • 37 Schilling S, Tzourio C, Dufouil C, Zhu Y, Berr C, Alperovitch A, Crivello F, Mazoyer B, Deberre S. Plasma lipids and cerebral small vessel disease. Neurology 2014; 83: 1844-1852
  • 38 Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P. Prolonged exposure to free fatty acids has cytostatic and proapoptotic effect on human pancreatic islets. Diabetes 2002; 51: 1437-1442