Int J Sports Med 2015; 36(11): 922-928
DOI: 10.1055/s-0035-1549959
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Neuromuscular Fatigue after Submaximal Intermittent Contractions in Motorcycle Riders

P. Torrado
1   INEFC Barcelona, Sport Performance, Barcelona, Spain
,
C. Cabib
2   Hospital Clínic, Neurophysiology, Barcelona, Spain
,
M. Morales
2   Hospital Clínic, Neurophysiology, Barcelona, Spain
,
J. Valls-Sole
3   Hospital Clinic, Neurology, Barcelona, Spain
,
M. Marina
1   INEFC Barcelona, Sport Performance, Barcelona, Spain
› Author Affiliations
Further Information

Publication History



accepted after revision 13 April 2015

Publication Date:
03 July 2015 (online)

Abstract

Highly repetitive submaximal intermittent contractions of the forearm muscles during periods of 30–50 min partially explain why motorcycle races are so demanding for the neuromuscular system. This study investigated the contribution of central and peripheral mechanisms of fatigue on the exerted and contralateral extensor digitorum communis following an intermittent fatigue protocol (IFP) designed for motorcycle riders. 12 riders performed an IFP, which simulates the braking and throttle handle gesture. We examined the time course of recovery of maximal voluntary contraction (MVC), M-wave, motor evoked potential (MEP) to transcranial magnetic stimuli in relaxed and facilitated condition, and the cortical silent period (CSP) at time windows of 1, 3, 5, 10 and 20 min after the IFP. Whereas MVC, M-wave and MEP decreased, CSP lengthened significantly in the fatigued limb after completion of the IFP. Nevertheless, no differences were observed in the contralateral limb. All neurophysiological parameters reverted to baseline values in less than 20 min, while MVC remained lower in the exercised limb. No cross-over effects were observed in the contralateral non-exercised limb. Our results suggest that local factors are those mainly responsible for the incomplete MVC recovery after an intermittent muscle contraction protocol.

 
  • References

  • 1 Ajiboye AB, Weir RF. Muscle synergies as a predictive framework for the EMG patterns of new hand postures. J Neural Eng 2009; 6: 036004
  • 2 Andersen B, Westlund B, Krarup C. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation. J Physiol 2003; 551: 345-356
  • 3 Baker AJ, Kostov KG, Miller RG, Weiner MW. Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol 1993; 74: 2294-2300
  • 4 Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 325: 1106-1107
  • 5 Behm DG, St-Pierre DMM. Effects of fatigue duration and muscle type on voluntary and evoked contractile properties. J Appl Physiol 1997; 82: 1654-1661
  • 6 Behm DG, St Pierre DMM. Fatigue mechanisms in trained and untrained plantar flexors. J Strength Cond Res 1998; 12: 166-172
  • 7 Bilodeau M. Central fatigue in continuous and intermittent contractions of triceps brachii. Muscle Nerve 2006; 34: 205-213
  • 8 Bruton J, Lännergren J, Westerblad H. Mechanisms underlying the slow recovery of force after fatigue: importance of intracellular calcium. Acta Physiol Scand 1998; 162: 285-293
  • 9 De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech 1997; 13: 135-163
  • 10 Doix AC, Lefevre F, Colson SS. Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS One 2013; 8: e64910
  • 11 Duchateau J, Hainaut K. Electrical and mechanical failures during sustained and intermittent contractions in humans. J Appl Physiol 1985; 58: 942-947
  • 12 Edwards R, Hill D, Jones D, Merton P. Fatigue of long duration in human skeletal muscle after exercise. J Physiol 1977; 272: 769-778
  • 13 Eichelberger TD, Bilodeau M. Central fatigue of the first dorsal interosseous muscle during low-force and high-force sustained submaximal contractions. Clin Physiol Funct Imaging 2007; 27: 298-304
  • 14 Enoka RM. Mechanisms of muscle fatigue: central factors and task dependency. J Electromyogr Kinesiol 1995; 5: 141-149
  • 15 Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol 2008; 586: 11-23
  • 16 Farina S, Valeriani M, Rosso T, Aglioti S, Tamburin S, Fiaschi A, Tinazzi M. Transient inhibition of the human motor cortex by capsaicin-induced pain. A study with transcranial magnetic stimulation. Neurosci Lett 2001; 314: 97-101
  • 17 Fuglevand A, Zackowski K, Huey K, Enoka R. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol 1993; 460: 549-572
  • 18 Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001; 81: 1725-1789
  • 19 Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience 2013; 231: 384-399
  • 20 Hagg GM, Milerad E. Forearm extensor and flexor muscle exertion during simulated gripping work – An electromyographic study. Clin Biomech 1997; 12: 39-43
  • 21 Harriss D, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. Int J Sports Med 2013; 34: 1025-1028
  • 22 Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000; 10: 361-374
  • 23 Humphry A, Lloyd-Davies E, Teare R, Williams K, Strutton P, Davey N. Specificity and functional impact of post-exercise depression of cortically evoked motor potentials in man. Eur J Appl Physiol 2004; 92: 211-218
  • 24 Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 1993; 466: 521-534
  • 25 Kamen G, Gabriel DA. Essentials of electromyography. Human Kinetics 2010; 184-185
  • 26 Kamimura T, Ikuta Y. Evaluation of grip strength with a sustained maximal isometric contraction for 6 and 10 seconds. J Rehabil Med 2001; 33: 225-229
  • 27 Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol 2003; 2: 145-156
  • 28 Lentz M, Nielsen JF. Post-exercise facilitation and depression of M wave and motor evoked potentials in healthy subjects. Clin Neurophysiol 2002; 113: 1092-1098
  • 29 Marina M, Porta J, Vallejo L, Angulo R. Monitoring hand flexor fatigue in a 24-h motorcycle endurance race. J Electromyogr Kinesiol 2011; 21: 255-261
  • 30 Marina M, Torrado P, Busquets A, Ríos JG, Angulo-Barroso R. Comparison of an intermittent and continuous forearm muscles fatigue protocol with motorcycle riders and control group. J Electromyogr Kinesiol 2013; 23: 84-93
  • 31 Martin PG, Rattey J. Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch 2007; 454: 957-969
  • 32 Martin PG, Weerakkody N, Gandevia SC, Taylor JL. Group III and IV muscle afferents differentially affect the motor cortex and motoneurones in humans. J Physiol 2008; 586: 1277-1289
  • 33 McKay WB, Tuel SM, Sherwood AM, Stokić DS, Dimitrijević MR. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study. Exp Brain Res 1995; 105: 276-282
  • 34 Post M, Bayrak S, Kernell D, Zijdewind I. Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle. J Appl Physiol 2008; 105: 70-82
  • 35 Rattey J, Martin PG, Kay D, Cannon J, Marino FE. Contralateral muscle fatigue in human quadriceps muscle: evidence for a centrally mediated fatigue response and cross-over effect. Pflugers Arch 2006; 452: 199-207
  • 36 Sacco P, Thickbroom GW, Byrnes ML, Mastaglia FL. Changes in corticomotor excitability after fatiguing muscle contractions. Muscle Nerve 2000; 23: 1840-1846
  • 37 Samii A, Caños M, Ikoma K, Wassermann EM, Hallett M. Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalogr Clin Neurophysiol 1997; 105: 241-245
  • 38 Samii A, Wassermann EM, Hallett M. Post-exercise depression of motor evoked potentials as a function of exercise duration. Electroencephalogr Clin Neurophysiol 1997; 105: 352-356
  • 39 Samii A, Wassermann EM, Ikoma K, Mercuri B, Hallett M. Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation. Neurology 1996; 46: 1376-1382
  • 40 Søgaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 2006; 573: 511-523
  • 41 Sonoo M, Uesugi H, Mochizuki A, Hatanaka Y, Shimizu T. Single fiber EMG and repetitive nerve stimulation of the same extensor digitorum communis muscle in myasthenia gravis. Clin Neurophysiol 2001; 112: 300-303
  • 42 Taylor JL, Allen GM, Butler JE, Gandevia SC. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol 2000; 89: 305-313
  • 43 Taylor JL, Butler JE, Allen GM, Gandevia SC. Changes in motor cortical excitability during human muscle fatigue. J Physiol 1996; 490: 519-528
  • 44 Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 2008; 104: 542-550
  • 45 Taylor JL, Petersen NT, Butler JE, Gandevia SC. Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects. J Physiol 2002; 541: 949-958
  • 46 Todd G, Petersen NT, Taylor JL, Gandevia SC. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Exp Brain Res 2003; 150: 308-313
  • 47 Werremeyer MM, Cole KJ. Wrist action affects precision grip force. J Neurophysiol 1997; 78: 271-280
  • 48 Zijdewind I, Zwarts MJ, Kernell D. Influence of a voluntary fatigue test on the contralateral homologous muscle in humans?. Neurosci Lett 1998; 253: 41-44
  • 49 Zijdewind I, Zwarts MJ, Kernell D. Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle. Exp Brain Res 2000; 130: 529-532