Semin Liver Dis 2015; 35(02): 107-118
DOI: 10.1055/s-0035-1550060
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Emerging and Disease-Specific Mechanisms of Hepatic Stellate Cell Activation

Michael C. Wallace
1   Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York
2   School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
,
Scott L. Friedman
1   Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York
,
Derek A. Mann
3   Fibrosis Laboratory, Institute of Cellular Medicine, New Castle University, Newcastle upon Tyne, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
14 May 2015 (online)

Abstract

The last decade has seen a rapid expansion in our understanding of the mechanisms leading to hepatic stellate cell activation. The classic activation pathway of initiation, perpetuation and regression remains as a useful model; however, the emergence of several new pathways and mediators has revealed a deeper complexity than previously appreciated. Although core fibrogenic pathways exist across organs and disease types, there is accumulating evidence for disease- and context-specific mechanisms that may modulate or drive hepatic fibrogenesis. Hence, a “one size fits all” approach to antifibrotic therapy may not be appropriate for all disease settings. The authors present a focused and concise update of the most recent advances in our understanding of hepatic stellate cell activation pathways, while highlighting several challenges that may be constraining progress. This summary provides a foundation to further expand our knowledge of this unique cell type and its contributions to human liver disease.

 
  • References

  • 1 Mederacke I, Hsu CC, Troeger JS , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 2 Iwaisako K, Jiang C, Zhang M , et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 2014; 111 (32) E3297-E3305
  • 3 Michelotti GA, Xie G, Swiderska M , et al. Smoothened is a master regulator of adult liver repair. J Clin Invest 2013; 123 (6) 2380-2394
  • 4 Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214 (2) 199-210
  • 5 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88 (1) 125-172
  • 6 Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425-456
  • 7 Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 2011; 25 (2) 195-206
  • 8 Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev 2009; 61 (7-8) 497-512
  • 9 Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol 2013; 3 (4) 1473-1492
  • 10 Mann DA. Epigenetics in liver disease. Hepatology 2014; 60 (4) 1418-1425
  • 11 Henderson NC, Arnold TD, Katamura Y , et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013; 19 (12) 1617-1624
  • 12 Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 2006; 44 (1) 57-66
  • 13 Kelly JD, Haldeman BA, Grant FJ , et al. Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit trans-phosphorylation. J Biol Chem 1991; 266 (14) 8987-8992
  • 14 Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest 1994; 94 (4) 1563-1569
  • 15 Ishikawa K, Mochida S, Mashiba S , et al. Expressions of vascular endothelial growth factor in nonparenchymal as well as parenchymal cells in rat liver after necrosis. Biochem Biophys Res Commun 1999; 254 (3) 587-593
  • 16 Kaur S, Tripathi D, Dongre K , et al. Increased number and function of endothelial progenitor cells stimulate angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis through paracrine factors. J Hepatol 2012; 57 (6) 1193-1198
  • 17 Zhao Y, Wang Y, Wang Q, Liu Z, Liu Q, Deng X. Hepatic stellate cells produce vascular endothelial growth factor via phospho-p44/42 mitogen-activated protein kinase/cyclooxygenase-2 pathway. Mol Cell Biochem 2012; 359 (1-2) 217-223
  • 18 Min HK, Kapoor A, Fuchs M , et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 2012; 15 (5) 665-674
  • 19 Arsov T, Larter CZ, Nolan CJ , et al. Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem Biophys Res Commun 2006; 342 (4) 1152-1159
  • 20 Chen A, Tang Y, Davis V , et al. Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease. Hepatology 2013; 57 (6) 2202-2212
  • 21 Larter CZ, Yeh MM, Van Rooyen DM , et al. Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J Gastroenterol Hepatol 2009; 24 (10) 1658-1668
  • 22 Teratani T, Tomita K, Suzuki T , et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 2012; 142 (1) 152-164.e10
  • 23 Tomita K, Teratani T, Suzuki T , et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 2014; 59 (1) 154-169
  • 24 Tomita K, Teratani T, Suzuki T , et al. Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J Hepatol 2014; 61 (1) 98-106
  • 25 Van Rooyen DM, Gan LT, Yeh MM , et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol 2013; 59 (1) 144-152
  • 26 Van Rooyen DM, Larter CZ, Haigh WG , et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 2011; 141 (4) 1393-1403 , 1403.e1–1403.e5
  • 27 Henle T. Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 2005; 29 (4) 313-322
  • 28 Jiang JX, Chen X, Fukada H, Serizawa N, Devaraj S, Török NJ. Advanced glycation endproducts induce fibrogenic activity in nonalcoholic steatohepatitis by modulating TNF-α-converting enzyme activity in mice. Hepatology 2013; 58 (4) 1339-1348
  • 29 Leung C, Herath CB, Jia Z , et al. Dietary glycotoxins exacerbate progression of experimental fatty liver disease. J Hepatol 2014; 60 (4) 832-838
  • 30 Arndt S, Wacker E, Dorn C , et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut 2014;
  • 31 Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 2013; 57 (2) 577-589
  • 32 Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147 (4) 765-783.e4
  • 33 Zan Y, Zhang Y, Tien P. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells. Biochem Biophys Res Commun 2013; 435 (3) 391-396
  • 34 Bai Q, An J, Wu X , et al. HBV promotes the proliferation of hepatic stellate cells via the PDGF-B/PDGFR-β signaling pathway in vitro. Int J Mol Med 2012; 30 (6) 1443-1450
  • 35 Jin Z, Sun R, Wei H, Gao X, Chen Y, Tian Z. Accelerated liver fibrosis in hepatitis B virus transgenic mice: involvement of natural killer T cells. Hepatology 2011; 53 (1) 219-229
  • 36 Li J, Qiu SJ, She WM , et al. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. PLoS ONE 2012; 7 (6) e39307
  • 37 Zhao J, Zhang Z, Luan Y , et al. Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology 2014; 59 (4) 1331-1342
  • 38 Florimond A, Chouteau P, Bruscella P , et al. Human hepatic stellate cells are not permissive for hepatitis C virus entry and replication. Gut 2014;
  • 39 Battaglia S, Benzoubir N, Nobilet S , et al. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS ONE 2009; 4 (2) e4355
  • 40 Benzoubir N, Lejamtel C, Battaglia S , et al. HCV core-mediated activation of latent TGF-β via thrombospondin drives the crosstalk between hepatocytes and stromal environment. J Hepatol 2013; 59 (6) 1160-1168
  • 41 Presser LD, McRae S, Waris G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. PLoS ONE 2013; 8 (2) e56367
  • 42 Langhans B, Krämer B, Louis M , et al. Intrahepatic IL-8 producing Foxp3+CD4+ regulatory T cells and fibrogenesis in chronic hepatitis C. J Hepatol 2013; 59 (2) 229-235
  • 43 Preisser L, Miot C, Le Guillou-Guillemette H , et al. IL-34 and M-CSF are overexpressed in HCV fibrosis and induce pro-fibrotic macrophages which promote collagen synthesis by hepatic stellate cells. Hepatology 2014;
  • 44 Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 2008; 134 (1) 248-258
  • 45 Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141 (5) 1572-1585
  • 46 Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 2013; 28 (1) (Suppl. 01) 38-42
  • 47 Álvarez R, Vaz B, Gronemeyer H, de Lera AR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2014; 114 (1) 1-125
  • 48 Radaeva S, Wang L, Radaev S, Jeong WI, Park O, Gao B. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol 2007; 293 (4) G809-G816
  • 49 Yi HS, Lee YS, Byun JS , et al. Alcohol dehydrogenase III exacerbates liver fibrosis by enhancing stellate cell activation and suppressing natural killer cells in mice. Hepatology 2014; 60 (3) 1044-1053
  • 50 Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53 (6) 1883-1894
  • 51 Valenti L, Al-Serri A, Daly AK , et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51 (4) 1209-1217
  • 52 Burza MA, Pirazzi C, Maglio C , et al. PNPLA3 I148M (rs738409) genetic variant is associated with hepatocellular carcinoma in obese individuals. Dig Liver Dis 2012; 44 (12) 1037-1041
  • 53 Pirazzi C, Valenti L, Motta BM , et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014; 23 (15) 4077-4085
  • 54 Kluwe J, Wongsiriroj N, Troeger JS , et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 2011; 60 (9) 1260-1268
  • 55 Nevzorova YA, Bangen JM, Hu W , et al. Cyclin E1 controls proliferation of hepatic stellate cells and is essential for liver fibrogenesis in mice. Hepatology 2012; 56 (3) 1140-1149
  • 56 Sekiya Y, Ogawa T, Iizuka M, Yoshizato K, Ikeda K, Kawada N. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-β-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol 2011; 226 (10) 2535-2542
  • 57 Rao HY, Wei L, Wang JH , et al. Inhibitory effect of human interferon-beta-1a on activated rat and human hepatic stellate cells. J Gastroenterol Hepatol 2010; 25 (11) 1777-1784
  • 58 Hu W, Nevzorova YA, Haas U , et al. Concurrent deletion of cyclin E1 and cyclin-dependent kinase 2 in hepatocytes inhibits DNA replication and liver regeneration in mice. Hepatology 2014; 59 (2) 651-660
  • 59 Nevzorova YA, Hu W, Cubero FJ , et al. Overexpression of c-myc in hepatocytes promotes activation of hepatic stellate cells and facilitates the onset of liver fibrosis. Biochim Biophys Acta 2013; 1832 (10) 1765-1775
  • 60 Reebye V, Sætrom P, Mintz PJ , et al. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology 2014; 59 (1) 216-227
  • 61 Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 2012; 56 (2) 769-775
  • 62 Czaja MJ, Ding WX, Donohue Jr TM , et al. Functions of autophagy in normal and diseased liver. Autophagy 2013; 9 (8) 1131-1158
  • 63 Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R , et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142 (4) 938-946
  • 64 Tanjore H, Lawson WE, Blackwell TS. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta 2013; 1832 (7) 940-947
  • 65 Huang Y, Li X, Wang Y, Wang H, Huang C, Li J. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Mol Cell Biochem 2014; 394 (1-2) 1-12
  • 66 Hernández-Gea V, Hilscher M, Rozenfeld R , et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol 2013; 59 (1) 98-104
  • 67 Park HW, Park H, Ro SH , et al. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 2014; 5: 4233
  • 68 Fucho R, Martínez L, Baulies A , et al. ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. J Hepatol 2014; 61 (5) 1126-1134
  • 69 Chen J, Han Y, Xu C, Xiao T, Wang B. Effect of type 2 diabetes mellitus on the risk for hepatocellular carcinoma in chronic liver diseases: a meta-analysis of cohort studies. Eur J Cancer Prev 2014;
  • 70 Omenetti A, Choi S, Michelotti G, Diehl AM. Hedgehog signaling in the liver. J Hepatol 2011; 54 (2) 366-373
  • 71 Yang L, Wang Y, Mao H , et al. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 2008; 48 (1) 98-106
  • 72 Chen Y, Choi SS, Michelotti GA , et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 2012; 143 (5) 1319-29.e1 , 11
  • 73 Grzelak CA, Martelotto LG, Sigglekow ND , et al. The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury. J Hepatol 2014; 60 (1) 143-151
  • 74 Machado MV, Michelotti GA, Pereira TD , et al. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 2014;
  • 75 Guy CD, Suzuki A, Abdelmalek MF, Burchette JL, Diehl AM. NASH CRN. Treatment response in the PIVENS Trial is associated with decreased Hedgehog pathway activity. Hepatology 2015; 61 (1) 98-107
  • 76 Xie G, Karaca G, Swiderska-Syn M , et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology 2013; 58 (5) 1801-1813
  • 77 MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17 (1) 9-26
  • 78 Lade AG, Monga SP. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow?. Dev Dyn 2011; 240 (3) 486-500
  • 79 Akhmetshina A, Palumbo K, Dees C , et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012; 3: 735
  • 80 Hoshida Y, Nijman SM, Kobayashi M , et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69 (18) 7385-7392
  • 81 Myung SJ, Yoon JH, Gwak GY , et al. Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Lett 2007; 581 (16) 2954-2958
  • 82 Cheng JH, She H, Han YP , et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2008; 294 (1) G39-G49
  • 83 Jiang F, Parsons CJ, Stefanovic B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol 2006; 45 (3) 401-409
  • 84 Rashid ST, Humphries JD, Byron A , et al. Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver. J Proteome Res 2012; 11 (8) 4052-4064
  • 85 Zhai X, Yan K, Fan J , et al. The β-catenin pathway contributes to the effects of leptin on SREBP-1c expression in rat hepatic stellate cells and liver fibrosis. Br J Pharmacol 2013; 169 (1) 197-212
  • 86 Yin X, Yi H, Wu W, Shu J, Wu X, Yu L. R-spondin2 activates hepatic stellate cells and promotes liver fibrosis. Dig Dis Sci 2014; 59 (10) 2452-2461
  • 87 Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des 2013; 19 (4) 634-664
  • 88 Delgado I, Carrasco M, Cano E , et al. GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 2014; 59 (6) 2358-2370
  • 89 Patankar JV, Chandak PG, Obrowsky S , et al. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2011; 300 (3) E478-E488
  • 90 Patankar JV, Obrowsky S, Doddapattar P , et al. Intestinal GATA4 deficiency protects from diet-induced hepatic steatosis. J Hepatol 2012; 57 (5) 1061-1068
  • 91 Zheng R, Rebolledo-Jaramillo B, Zong Y , et al. Function of GATA factors in the adult mouse liver. PLoS ONE 2013; 8 (12) e83723
  • 92 Lopez-Sanchez I, Dunkel Y, Roh YS , et al. GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nat Commun 2014; 5: 4451
  • 93 Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21 (3) 297-308
  • 94 Beaven SW, Wroblewski K, Wang J , et al. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology 2011; 140 (3) 1052-1062
  • 95 Hazra S, Xiong S, Wang J , et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 2004; 279 (12) 11392-11401
  • 96 Verbeke L, Farre R, Trebicka J , et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 2014; 59 (6) 2286-2298
  • 97 Fiorucci S, Antonelli E, Rizzo G , et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004; 127 (5) 1497-1512
  • 98 Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 2012; 13 (4) 213-224
  • 99 Kong B, Luyendyk JP, Tawfik O, Guo GL. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 2009; 328 (1) 116-122
  • 100 Li T, Eheim AL, Klein S , et al. Novel role of nuclear receptor Rev-erbα in hepatic stellate cell activation: potential therapeutic target for liver injury. Hepatology 2014; 59 (6) 2383-2396
  • 101 Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov 2014; 13 (3) 197-216
  • 102 Ruano EG, Canivell S, Vieira E. REV-ERB ALPHA polymorphism is associated with obesity in the Spanish obese male population. PLoS ONE 2014; 9 (8) e104065
  • 103 Marvie P, Lisbonne M, L'helgoualc'h A , et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med 2010; 14 (6B): 1726-1739
  • 104 McHedlidze T, Waldner M, Zopf S , et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013; 39 (2) 357-371
  • 105 Zeybel M, Mann DA, Mann J. Epigenetic modifications as new targets for liver disease therapies. J Hepatol 2013; 59 (6) 1349-1353
  • 106 Tian W, Hao C, Fan Z , et al. Myocardin related transcription factor A programs epigenetic activation of hepatic stellate cells. J Hepatol 2015; 62 (1) 165-174
  • 107 Small EM, Thatcher JE, Sutherland LB , et al. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 2010; 107 (2) 294-304
  • 108 Luchsinger LL, Patenaude CA, Smith BD, Layne MD. Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. J Biol Chem 2011; 286 (51) 44116-44125
  • 109 Hampl V, Martin C, Aigner A , et al. Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. EMBO Mol Med 2013; 5 (9) 1367-1382
  • 110 Perugorria MJ, Wilson CL, Zeybel M , et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology 2012; 56 (3) 1129-1139
  • 111 Xin X, Zhang Y, Liu X , et al. MicroRNA in hepatic fibrosis and cirrhosis. Front Biosci (Landmark Ed) 2014; 19: 1418-1424
  • 112 Roderburg C, Urban GW, Bettermann K , et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53 (1) 209-218
  • 113 Ramdas V, McBride M, Denby L, Baker AH. Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am J Pathol 2013; 183 (6) 1885-1896
  • 114 Zhang Y, Huang XR, Wei LH, Chung AC, Yu CM, Lan HY. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther 2014; 22 (5) 974-985
  • 115 Parker MW, Rossi D, Peterson M , et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 2014; 124 (4) 1622-1635
  • 116 Montgomery RL, Yu G, Latimer PA , et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med 2014; 6 (10) 1347-1356
  • 117 Seok J, Warren HS, Cuenca AG , et al; Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013; 110 (9) 3507-3512
  • 118 Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2015; 112 (4) 1167-1172
  • 119 Westra IM, Oosterhuis D, Groothuis GM, Olinga P. The effect of antifibrotic drugs in rat precision-cut fibrotic liver slices. PLoS ONE 2014; 9 (4) e95462
  • 120 Ikegami T, Maehara Y. Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol 2013; 10 (12) 697-698
  • 121 Wu Q, Gao D, Wei J , et al. Development of a novel multi-layer microfluidic device towards characterization of drug metabolism and cytotoxicity for drug screening. Chem Commun (Camb) 2014; 50 (21) 2762-2764
  • 122 Sirota M, Dudley JT, Kim J , et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 2011; 3 (96) 96ra77
  • 123 Jahchan NS, Dudley JT, Mazur PK , et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov 2013; 3 (12) 1364-1377
  • 124 Dudley JT, Sirota M, Shenoy M , et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 2011; 3 (96) 96ra76
  • 125 Liu YL, Reeves HL, Burt AD , et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014; 5: 4309
  • 126 Puche JE, Lee YA, Jiao J , et al. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 2013; 57 (1) 339-350
  • 127 Arabpour M, Poelstra K, Helfrich W, Bremer E, Haisma HJ. Targeted elimination of activated Hepatic Stellate Cells by an anti-EGF-receptor scFv-sTRAIL fusion protein. J Gene Med 2014;