Semin Neurol 2015; 35(04): 360-368
DOI: 10.1055/s-0035-1558979
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Myotonic Disorders and Channelopathies

Colin Quinn
1   Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
,
Mohammad Kian Salajegheh
2   Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
06 October 2015 (online)

Abstract

Myotonic dystrophies and channelopathies are rare but important causes of muscle diseases which may present with myotonia, episodic attacks of weakness, fixed muscle weakness, and atrophy or their combination. Here, the authors provide an overview of these disorders and describe their clinical and pathophysiological features, diagnostic methods, and management.

 
  • References

  • 1 Tramonte JJ, Burns TM. Myotonic dystrophy. Arch Neurol 2005; 62 (8) 1316-1319
  • 2 Lotz BP, van der Meyden CH. Myotonic dystrophy. Part I. A genealogical study in the northern Transvaal. S Afr Med J 1985; 67 (20) 812-814
  • 3 Hsiao KM, Chen SS, Li SY , et al. Epidemiological and genetic studies of myotonic dystrophy type 1 in Taiwan. Neuroepidemiology 2003; 22 (5) 283-289
  • 4 Brook JD, McCurrach ME, Harley HG , et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992; 68 (4) 799-808
  • 5 Heatwole C, Bode R, Johnson N , et al. Patient-reported impact of symptoms in myotonic dystrophy type 1 (PRISM-1). Neurology 2012; 79 (4) 348-357
  • 6 Tsilfidis C, MacKenzie AE, Mettler G, Barceló J, Korneluk RG. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat Genet 1992; 1 (3) 192-195
  • 7 Ashizawa T, Dunne CJ, Dubel JR , et al. Anticipation in myotonic dystrophy. I. Statistical verification based on clinical and haplotype findings. Neurology 1992; 42 (10) 1871-1877
  • 8 Harley HG, Rundle SA, Reardon W , et al. Unstable DNA sequence in myotonic dystrophy. Lancet 1992; 339 (8802) 1125-1128
  • 9 Höweler CJ, Busch HF, Geraedts JP, Niermeijer MF, Staal A. Anticipation in myotonic dystrophy: fact or fiction?. Brain 1989; 112 (Pt 3): 779-797
  • 10 Redman JB, Fenwick Jr RG, Fu YH, Pizzuti A, Caskey CT. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. JAMA 1993; 269 (15) 1960-1965
  • 11 Campbell C, Levin S, Siu VM, Venance S, Jacob P. Congenital myotonic dystrophy: Canadian population-based surveillance study. J Pediatr 2013; 163 (1) 120-125.e1 , 3
  • 12 Ashizawa T, Dubel JR, Harati Y. Somatic instability of CTG repeat in myotonic dystrophy. Neurology 1993; 43 (12) 2674-2678
  • 13 Thornton CA, Johnson K, Moxley III RT. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol 1994; 35 (1) 104-107
  • 14 Mankodi A, Logigian E, Callahan L , et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 2000; 289 (5485) 1769-1773
  • 15 Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 1995; 128 (6) 995-1002
  • 16 Davis BM, McCurrach ME, Taneja KL, Singer RH, Housman DE. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci U S A 1997; 94 (14) 7388-7393
  • 17 Timchenko LT, Timchenko NA, Caskey CT, Roberts R. Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy. Hum Mol Genet 1996; 5 (1) 115-121
  • 18 Lu X, Timchenko NA, Timchenko LT. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum Mol Genet 1999; 8 (1) 53-60
  • 19 Miller JW, Urbinati CR, Teng-Umnuay P , et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 2000; 19 (17) 4439-4448
  • 20 Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 2004; 13 (24) 3079-3088
  • 21 Ebralidze A, Wang Y, Petkova V, Ebralidse K, Junghans RP. RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science 2004; 303 (5656) 383-387
  • 22 Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998; 280 (5364) 737-741
  • 23 Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002; 10 (1) 45-53
  • 24 Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001; 29 (1) 40-47
  • 25 Liquori CL, Ricker K, Moseley ML , et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001; 293 (5531) 864-867
  • 26 Day JW, Ricker K, Jacobsen JF , et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003; 60 (4) 657-664
  • 27 Bachinski LL, Czernuszewicz T, Ramagli LS , et al. Premutation allele pool in myotonic dystrophy type 2. Neurology 2009; 72 (6) 490-497
  • 28 Radvanszky J, Surovy M, Polak E, Kadasi L. Uninterrupted CCTG tracts in the myotonic dystrophy type 2 associated locus. Neuromuscul Disord 2013; 23 (7) 591-598
  • 29 Mankodi A, Urbinati CR, Yuan QP , et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001; 10 (19) 2165-2170
  • 30 Zaki M, Boyd PA, Impey L, Roberts A, Chamberlain P. Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound Obstet Gynecol 2007; 29 (3) 284-288
  • 31 Harper P. Myotonic dystrophy. London, England: W.B. Saunders; 1979
  • 32 Thornton CA. Myotonic dystrophy. Neurol Clin 2014; 32 (3) 705-719 , viii viii
  • 33 Colleran JA, Hawley RJ, Pinnow EE, Kokkinos PF, Fletcher RD. Value of the electrocardiogram in determining cardiac events and mortality in myotonic dystrophy. Am J Cardiol 1997; 80 (11) 1494-1497
  • 34 Benhayon D, Lugo R, Patel R, Carballeira L, Elman L, Cooper JM. Long-term arrhythmia follow-up of patients with myotonic dystrophy. J Cardiovasc Electrophysiol 2015; 26 (3) 305-310
  • 35 de Die-Smulders CE, Höweler CJ, Thijs C , et al. Age and causes of death in adult-onset myotonic dystrophy. Brain 1998; 121 (Pt 8): 1557-1563
  • 36 Wahbi K, Meune C, Bécane HM , et al. Left ventricular dysfunction and cardiac arrhythmias are frequent in type 2 myotonic dystrophy: a case control study. Neuromuscul Disord 2009; 19 (7) 468-472
  • 37 Schoser BG, Ricker K, Schneider-Gold C , et al. Sudden cardiac death in myotonic dystrophy type 2. Neurology 2004; 63 (12) 2402-2404
  • 38 Amato A, Russell J. Neuromuscular Disorders. New York, NY: McGraw-Hill; 2008
  • 39 Vazquez JA, Pinies JA, Martul P, De los Rios A, Gatzambide S, Busturia MA. Hypothalamic-pituitary-testicular function in 70 patients with myotonic dystrophy. J Endocrinol Invest 1990; 13 (5) 375-379
  • 40 Peric S, Nisic T, Milicev M , et al. Hypogonadism and erectile dysfunction in myotonic dystrophy type 1. Acta Myologica: Myopathies and Cardiomyopathies 2013; 32: 106-109
  • 41 Feyereisen E, Amar A, Kerbrat V , et al. Myotonic dystrophy: does it affect ovarian follicular status and responsiveness to controlled ovarian stimulation?. Hum Reprod 2006; 21 (1) 175-182
  • 42 Sahu B, Ozturk O, Deo N, Fordham K, Ranierri M, Serhal P. Response to controlled ovarian stimulation and oocyte quality in women with myotonic dystrophy type I. J Assist Reprod Genet 2008; 25 (1) 1-5
  • 43 Moxley III RT, Griggs RC, Goldblatt D, VanGelder V, Herr BE, Thiel R. Decreased insulin sensitivity of forearm muscle in myotonic dystrophy. J Clin Invest 1978; 62 (4) 857-867
  • 44 Ørngreen MC, Arlien-Søborg P, Duno M, Hertz JM, Vissing J. Endocrine function in 97 patients with myotonic dystrophy type 1. J Neurol 2012; 259 (5) 912-920
  • 45 Ekström AB, Hakenäs-Plate L, Tulinius M, Wentz E. Cognition and adaptive skills in myotonic dystrophy type 1: a study of 55 individuals with congenital and childhood forms. Dev Med Child Neurol 2009; 51 (12) 982-990
  • 46 Angeard N, Gargiulo M, Jacquette A, Radvanyi H, Eymard B, Héron D. Cognitive profile in childhood myotonic dystrophy type 1: is there a global impairment?. Neuromuscul Disord 2007; 17 (6) 451-458
  • 47 Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve 2007; 36 (3) 294-306
  • 48 Minnerop M, Weber B, Schoene-Bake JC , et al. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain 2011; 134 (Pt 12): 3530-3546
  • 49 Delaporte C. Personality patterns in patients with myotonic dystrophy. Arch Neurol 1998; 55 (5) 635-640
  • 50 Wozniak JR, Mueller BA, Bell CJ, Muetzel RL, Lim KO, Day JW. Diffusion tensor imaging reveals widespread white matter abnormalities in children and adolescents with myotonic dystrophy type 1. J Neurol 2013; 260 (4) 1122-1131
  • 51 Laberge L, Bégin P, Dauvilliers Y , et al. A polysomnographic study of daytime sleepiness in myotonic dystrophy type 1. J Neurol Neurosurg Psychiatry 2009; 80 (6) 642-646
  • 52 Dabby R, Sadeh M, Herman O , et al. Clinical, electrophysiologic and pathologic findings in 10 patients with myotonic dystrophy 2. Isr Med Assoc J 2011; 13 (12) 745-747
  • 53 Streib EW, Sun SF. Distribution of electrical myotonia in myotonic muscular dystrophy. Ann Neurol 1983; 14 (1) 80-82
  • 54 Logigian EL, Ciafaloni E, Quinn LC , et al. Severity, type, and distribution of myotonic discharges are different in type 1 and type 2 myotonic dystrophy. Muscle Nerve 2007; 35 (4) 479-485
  • 55 Rakocevic Stojanovic V, Peric S, Paunic T , et al. Cardiologic predictors of sudden death in patients with myotonic dystrophy type 1. J Clin Neurosci 2013; 20 (7) 1002-1006
  • 56 Groh WJ, Groh MR, Saha C , et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 2008; 358 (25) 2688-2697
  • 57 Adrian RH, Bryant SH. On the repetitive discharge in myotonic muscle fibres. J Physiol 1974; 240 (2) 505-515
  • 58 Tan SV, Z'Graggen WJ, Boërio D , et al. Chloride channels in myotonia congenita assessed by velocity recovery cycles. Muscle Nerve 2014; 49 (6) 845-857
  • 59 Harper PS, Johnston DM. Recessively inherited myotonia congenita. J Med Genet 1972; 9 (2) 213-215
  • 60 Rüdel R, Ricker K, Lehmann-Horn F. Transient weakness and altered membrane characteristic in recessive generalized myotonia (Becker). Muscle Nerve 1988; 11 (3) 202-211
  • 61 Raja Rayan DL, Haworth A, Sud R , et al. A new explanation for recessive myotonia congenita: exon deletions and duplications in CLCN1. Neurology 2012; 78 (24) 1953-1958
  • 62 Fournier E, Arzel M, Sternberg D , et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol 2004; 56 (5) 650-661
  • 63 Fournier E, Viala K, Gervais H , et al. Cold extends electromyography distinction between ion channel mutations causing myotonia. Ann Neurol 2006; 60 (3) 356-365
  • 64 Tan SV, Matthews E, Barber M , et al. Refined exercise testing can aid DNA-based diagnosis in muscle channelopathies. Ann Neurol 2011; 69 (2) 328-340
  • 65 Statland JM, Bundy BN, Wang Y , et al; Consortium for Clinical Investigation of Neurologic Channelopathies. Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: a randomized controlled trial. JAMA 2012; 308 (13) 1357-1365
  • 66 Salajegheh M, Amato AA. Paroxysmal paralysis. In: Squire LR. (Ed.). Encyclopedia of Neuroscience. Oxford, England: Academic Press; 2009: 496-507
  • 67 Ptácek L. The familial periodic paralyses and nondystrophic myotonias. Am J Med 1998; 105 (1) 58-70
  • 68 Tyler FH, Stephens FE, Gunn FD, Perkoff GT. Studies in disorders of muscle. VII. Clinical manifestations and inheritance of a type of periodic paralysis without hypopotassemia. J Clin Invest 1951; 30 (5) 492-502
  • 69 Charles G, Zheng C, Lehmann-Horn F, Jurkat-Rott K, Levitt J. Characterization of hyperkalemic periodic paralysis: a survey of genetically diagnosed individuals. J Neurol 2013; 260 (10) 2606-2613
  • 70 Feero WG, Wang J, Barany F , et al. Hyperkalemic periodic paralysis: rapid molecular diagnosis and relationship of genotype to phenotype in 12 families. Neurology 1993; 43 (4) 668-673
  • 71 Miller TM, Dias da Silva MR, Miller HA , et al. Correlating phenotype and genotype in the periodic paralyses. Neurology 2004; 63 (9) 1647-1655
  • 72 Ebers GC, George AL, Barchi RL , et al. Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene. Ann Neurol 1991; 30 (6) 810-816
  • 73 Eulenburg A. Über eine familiäre durch sechs Generationen verfolgbare Form congenitaler Paramyotonie. Neurologisches Centralblatt 1886; 12: 265-272
  • 74 Layzer RB, Lovelace RE, Rowland LP. Hyperkalemic periodic paralysis. Arch Neurol 1967; 16 (5) 455-472
  • 75 Ricker K, Lehmann-Horn F, Moxley III RT. Myotonia fluctuans. Arch Neurol 1990; 47 (3) 268-272
  • 76 Ricker K, Moxley III RT, Heine R, Lehmann-Horn F. Myotonia fluctuans. A third type of muscle sodium channel disease. Arch Neurol 1994; 51 (11) 1095-1102
  • 77 Lerche H, Heine R, Pika U , et al. Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J Physiol 1993; 470: 13-22
  • 78 Trudell RG, Kaiser KK, Griggs RC. Acetazolamide-responsive myotonia congenita. Neurology 1987; 37 (3) 488-491
  • 79 Sternberg D, Maisonobe T, Jurkat-Rott K , et al. Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain 2001; 124 (Pt 6): 1091-1099
  • 80 Plassart E, Reboul J, Rime CS , et al. Mutations in the muscle sodium channel gene (SCN4A) in 13 French families with hyperkalemic periodic paralysis and paramyotonia congenita: phenotype to genotype correlations and demonstration of the predominance of two mutations. Eur J Hum Genet 1994; 2 (2) 110-124
  • 81 Meyers KR, Gilden DH, Rinaldi CF, Hansen JL. Periodic muscle weakness, normokalemia, and tubular aggregates. Neurology 1972; 22 (3) 269-279
  • 82 McArdle B. Adynamia episodica hereditaria and its treatment. Brain 1962; 85: 121-148
  • 83 Tawil R, McDermott MP, Brown Jr R , et al; Working Group on Periodic Paralysis. Randomized trials of dichlorphenamide in the periodic paralyses. Ann Neurol 2000; 47 (1) 46-53
  • 84 Westphal CF. Über einen merkwürdigen Fall von periodischer Lähmung aller vier Extremitäten mit gleichzeitigem Erlöschen der elektrischen Erregbarkeit während der Lähmung. Berl Klin Wochenschr 1885; 22: 489-491 , 509–511
  • 85 Ptácek LJ, Tawil R, Griggs RC , et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 1994; 77 (6) 863-868
  • 86 Fouad G, Dalakas M, Servidei S , et al. Genotype-phenotype correlations of DHP receptor alpha 1-subunit gene mutations causing hypokalemic periodic paralysis. Neuromuscul Disord 1997; 7 (1) 33-38
  • 87 Matthews E, Labrum R, Sweeney MG , et al. Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology 2009; 72 (18) 1544-1547
  • 88 Sokolov S, Scheuer T, Catterall WA. Gating pore current in an inherited ion channelopathy. Nature 2007; 446 (7131) 76-78
  • 89 Fontaine B. Periodic paralysis. Adv Genet 2008; 63: 3-23
  • 90 Links TP, Smit AJ, Molenaar WM, Zwarts MJ, Oosterhuis HJ. Familial hypokalemic periodic paralysis. Clinical, diagnostic and therapeutic aspects. J Neurol Sci 1994; 122 (1) 33-43
  • 91 Links TP, Zwarts MJ, Wilmink JT, Molenaar WM, Oosterhuis HJ. Permanent muscle weakness in familial hypokalaemic periodic paralysis. Clinical, radiological and pathological aspects. Brain 1990; 113 (Pt 6): 1873-1889
  • 92 Gordon AM, Green JR, Lagunoff D. Studies on a patient with hypokalemic familial periodic paralysis. Am J Med 1970; 48 (2) 185-195
  • 93 Venance SL, Cannon SC, Fialho D , et al; CINCH investigators. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain 2006; 129 (Pt 1): 8-17
  • 94 Statland JM, Barohn RJ. Muscle channelopathies: the nondystrophic myotonias and periodic paralyses. Continuum (Minneap Minn) 2013; 19 (6 Muscle Disease): 1598-1614
  • 95 Lin SH, Lin YF, Chen DT, Chu P, Hsu CW, Halperin ML. Laboratory tests to determine the cause of hypokalemia and paralysis. Arch Intern Med 2004; 164 (14) 1561-1566
  • 96 Resnick JS, Engel WK, Griggs RC, Stam AC. Acetazolamide prophylaxis in hypokalemic periodic paralysis. N Engl J Med 1968; 278 (11) 582-586
  • 97 Matthews E, Portaro S, Ke Q , et al. Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology 2011; 77 (22) 1960-1964
  • 98 Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome?. Acta Paediatr Scand 1971; 60 (5) 559-564
  • 99 Plaster NM, Tawil R, Tristani-Firouzi M , et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 2001; 105 (4) 511-519
  • 100 Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 1993; 362 (6416) 127-133
  • 101 Davies NP, Imbrici P, Fialho D , et al. Andersen-Tawil syndrome: new potassium channel mutations and possible phenotypic variation. Neurology 2005; 65 (7) 1083-1089
  • 102 Tristani-Firouzi M, Jensen JL, Donaldson MR , et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 2002; 110 (3) 381-388
  • 103 Tawil R, Ptacek LJ, Pavlakis SG , et al. Andersen's syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol 1994; 35 (3) 326-330