Synlett 2015; 26(17): 2327-2331
DOI: 10.1055/s-0035-1560054
synpacts
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Mediated Synthesis of Trifluoroethyl Aryl Ethers

Yangjie Huang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
,
Ronglu Huang
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
,
Zhiqiang Weng*
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. of China   Email: zweng@fzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 19 June 2015

Accepted after revision: 02 July 2015

Publication Date:
19 August 2015 (online)

Abstract

A series of well-defined copper(I) fluoroalkoxide complexes, [(phen)2Cu][OCH2RF], have been shown to undergo trifluoroethoxylation, pentafluoropropoxylation, and tetrafluoropropoxylation with aryl and heteroaryl bromides to generate the corresponding trifluoroethyl, pentafluoropropyl, and tetrafluoropropyl (hetero)aryl ethers in good to excellent yields. The reaction tolerates a variety of functional groups and demonstrates efficient scalability and practicality.

 
  • References

  • 1 Begue J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008
  • 2 Irurre JJr, Casas J, Messeguer A. Bioorg. Med. Chem. Lett. 1993; 3: 179
  • 3 Reddy MR, Shibata N, Kondo Y, Nakamura S, Toru T. Angew. Chem. Int. Ed. 2006; 45: 8163
  • 4 Yoshiyama H, Shibata N, Sato T, Nakamura S, Toru T. Chem. Commun. 2008; 1977
  • 5 Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
  • 6 Idoux JP, Madenwald ML, Garcia BS, Chu DL, Gupton JT. J. Org. Chem. 1985; 50: 1876
  • 7 Umemoto T, Gotoh Y. J. Fluorine Chem. 1986; 31: 231
  • 8 Quach TD, Batey RA. Org. Lett. 2003; 5: 1381
  • 9 Camps F, Coll J, Messeguer A, Pericàs MA. Synthesis 1980; 727
  • 10 Hine J, Ghirardelli R. J. Org. Chem. 1958; 23: 1550
  • 11 Nakai T, Tanaka K, Ishikawa N. J. Fluorine Chem. 1977; 9: 89
  • 12 Kamal A, Pratap TB, Ramana KV, Ramana AV, Babu AH. Tetrahedron Lett. 2002; 43: 7353
  • 13 Gupton JT, Idoux JP, Colon C, Rampi R. Synth. Commun. 1982; 12: 695
  • 14 Idoux JP, Gupton JT, McCurry CK, Crews AD, Jurss CD, Colon C, Rampi RC. J. Org. Chem. 1983; 48: 3771
  • 15 Suzuki H, Matuoka T, Ohtsuka I, Osuka A. Synthesis 1985; 499
  • 16 Keegstra MA, Brandsma L. Recl. Trav. Chim. Pays-Bas 1991; 110: 299
  • 17 Vuluga D, Legros J, Crousse B, Bonnet-Delpon D. Eur. J. Org. Chem. 2009; 3513
  • 18 Rangarajan TM, Singh R, Brahma R, Devi K, Singh RP, Singh RP, Prasad AK. Chem. Eur. J. 2014; 20: 14218
  • 19 Rangarajan TM, Brahma R, Ayushee Prasad AK, Verma AK, Singh RP. Tetrahedron Lett. 2015; 56: 2234
  • 20 Burton DJ, Lu L. Top. Curr. Chem. 1997; 193: 46
  • 21 Burton DJ, Hartgraves GA. J. Fluorine Chem. 2007; 128: 1198
  • 22 Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
  • 23 Chen C, Ouyang L, Lin Q, Liu Y, Hou C, Yuan Y, Weng Z. Chem. Eur. J. 2014; 20: 657
  • 24 Liu Y, Chen C, Li H, Huang K.-W, Tan J, Weng Z. Organometallics 2013; 32: 6587
  • 25 Huang R, Huang Y, Lin X, Rong M, Weng Z. Angew. Chem. Int. Ed. 2015; 54: 5736 ; Corrigendum: Angew. Chem. Int. Ed. 2015, 54, 8022
  • 26 Joule JA, Mills K. Heterocyclic Chemistry. Wiley; Chichester: 2010
  • 27 Mormino MG, Fier PS, Hartwig JF. Org. Lett. 2014; 16: 1744
  • 28 Annunziata A, Galli C, Marinelli M, Pau T. Eur. J. Org. Chem. 2001; 1323
  • 29 Chen C, Weng Z, Hartwig JF. Organometallics 2012; 31: 8031
  • 30 Creutz SE, Lotito KJ, Fu GC, Peters JC. Science 2012; 338: 647
  • 31 Gurung SK, Thapa S, Vangala AS, Giri R. Org. Lett. 2013; 15: 5378