Subscribe to RSS
DOI: 10.1055/s-0035-1560420
Squaramide-Catalyzed Michael Addition as a Key Step for the Direct Synthesis of GABAergic Drugs
Publication History
Received: 26 November 2015
Accepted after revision: 05 February 2016
Publication Date:
11 March 2016 (online)
Abstract
Enantioselective organocatalytic Michael additions serve as the key step in syntheses of chiral drugs based on γ-aminobutyric acid. The applicability of various squaramide catalysts for these Michael-type reactions has been assessed. Very good results in terms both activity and enantioselectivity were obtained in the Michael addition of dimethyl malonate to β-nitrostyrenes. On the other hand, a complementary approach, the addition of nitromethane to cinnamaldehydes, worked well with a squaramide catalyst possessing an adjacent pyrrolidine moiety. The corresponding Michael adducts obtained in the best conditions are suitable chiral intermediates for the synthesis of therapeutically useful GABA derivatives. Polymer-immobilized squaramides afforded the Michael adduct in high enantiomeric purity, but yield deterioration was observed between runs. Two different formal total syntheses of baclofen have also been accomplished.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560420.
- Supporting Information
-
References
- 1 Leyva-Pérez A, García-García P, Corma A. Angew. Chem. Int. Ed. 2014; 53: 8687
- 2 Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M. Nature (London) 1980; 283: 92
- 3 Lapin I. CNS Drug Rev. 2001; 7: 471
- 4 Ricci A. ISRN Org. Chem. 2014; article ID 531695; http://dx.doi.org/10.1155/2014/531695, http://www.hindawi.com/ journals/isrn/contents/organic.chemistry/
- 5 Aleman J, Cabrera S. Chem. Soc. Rev. 2013; 42: 774
- 6 Christmann M. Applications of Aminocatalysis in Target-Oriented Synthesis. In Science of Synthesis: Asymmetric Organocatalysis. Vol. 1. List B. Thieme; Stuttgart: 2012: 439-454
- 7 Marcia de Figueiredo R, Christmann M. Eur. J. Org. Chem. 2007; 2575
- 8 Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
- 9 Žabka M, Šebesta R. Molecules 2015; 20: 15500 ; http://www.mdpi.com/journal/molecules
- 10 Auvil TJ, Schafer AG, Mattson AE. Eur. J. Org. Chem. 2014; 2633
- 11 Beckendorf S, Asmus S, Mancheño OG. ChemCatChem 2012; 4: 926
- 12 Zhang Z, Bao Z, Xing H. Org. Biomol. Chem. 2014; 12: 3151
- 13 Serdyuk OV, Heckel CM, Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
- 14 Siau W.-Y, Wang J. Catal. Sci. Technol. 2011; 1: 1298
- 15 Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 16 Connon SJ. Chem. Commun. 2008; 2499
- 17 Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
- 18 Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
- 19 Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
- 20 Takemoto Y. J. Synth. Org. Chem. Jpn. 2006; 64: 1139
- 21 Tsakos M, Kokotos CG, Kokotos G. Adv. Synth. Catal. 2012; 354: 740
- 22 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
- 23 Zhu Y, Malerich JP, Rawal VH. Angew. Chem. Int. Ed. 2010; 49: 153
- 24 Yang W, Du D.-M. Chem. Commun. 2011; 47: 12706
- 25 Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
- 26 Chen W, Jing Z, Chin KF, Qiao B, Zhao Y, Yan L, Tan C.-H, Jiang Z. Adv. Synth. Catal. 2014; 356: 1292
- 27 Cui B.-D, You Y, Zhao J.-Q, Zuo J, Wu Z.-J, Xu X.-Y, Zhang X.-M, Yuan W.-C. Chem. Commun. 2015; 51: 757
- 28 Loh CC. J, Hack D, Enders D. Chem. Commun. 2013; 49: 10230
- 29 Sun W, Hong L, Zhu G, Wang Z, Wei X, Ni J, Wang R. Org. Lett. 2014; 16: 544
- 30 Chauhan P, Mahajan S, Raabe G, Enders D. Chem. Commun. 2015; 51: 2270
- 31 Bae HY, Song CE. ACS Catal. 2015; 5: 3613
- 32 Zu L, Xie H, Li H, Wang J, Wang W. Adv. Synth. Catal. 2007; 349: 2660
- 33 Xie D, Xie Y, Ding Y, Wu J, Hu D. Molecules 2014; 19: 19491
- 34 Yang W, Du D.-M. Org. Lett. 2010; 12: 5450
- 35 Mailhol D, del Mar Sanchez Duque M, Raimondi W, Bonne D, Constantieux T, Coquerel Y, Rodriguez J. Adv. Synth. Catal. 2012; 354: 3523
- 36 Yang W, Du D.-M. Adv. Synth. Catal. 2011; 353: 1241
- 37 Baran R, Veverková E, Škvorcová A, Šebesta R. Org. Biomol. Chem. 2013; 11: 7705
- 38 Albrecht Ł, Dickmeiss G, Acosta FC, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
- 39 Dahlin N, Bøgevig A, Adolfsson H. Adv. Synth. Catal. 2004; 346: 1101
- 40 Alza E, Pericàs M. Adv. Synth. Catal. 2009; 351: 3051
- 41 McGuirk CM, Katz MJ, Stern CL, Sarjeant AA, Hupp JT, Farha OK, Mirkin CA. J. Am. Chem. Soc. 2015; 137: 919
- 42 Kardos G, Soós T. Eur. J. Org. Chem. 2013; 4490
- 43 Kasaplar P, Rodríguez-Escrich C, Pericàs MA. Org. Lett. 2013; 15: 3498
- 44 Kasaplar P, Riente P, Hartmann C, Pericàs MA. Adv. Synth. Catal. 2012; 354: 2905
- 45 Gotoh H, Ishikawa H, Hayashi Y. Org. Lett. 2007; 9: 5307
- 46 Lombardo M, Montroni E, Quintavalla A, Trombini C. Adv. Synth. Catal. 2012; 354: 3428
- 47 Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
- 48 Camps P, Muñoz-Torrero D, Sánchez L. Tetrahedron: Asymmetry 2004; 15: 2039
- 49 Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals . 6th ed. Elsevier; Amsterdam: 2009. online version available at www.knovel.com
- 50 Zhao B.-L, Du D.-M. RSC Adv. 2014; 4: 27346
- 51 Mitchell JM, Finney NS. Tetrahedron Lett. 2000; 41: 8431
- 52 Zhang L, Lee M.-M, Lee S.-M, Lee J, Cheng M, Jeong B.-S, Park H.-g, Jew S.-s. Adv. Synth. Catal. 2009; 351: 3063
- 53 Poe SL, Kobašlija M, McQuade DT. J. Am. Chem. Soc. 2007; 129: 9216
- 54 Kohler EP, Engelbrecht H. J. Am. Chem. Soc. 1919; 41: 764
- 55 Deng J, Hu X.-P, Huang J.-D, Yu S.-B, Wang D.-Y, Duan Z.-C, Zheng Z. J. Org. Chem. 2008; 73: 6022