Synlett 2016; 27(06): 854-858
DOI: 10.1055/s-0035-1560423
letter
© Georg Thieme Verlag Stuttgart · New York

Stereocontrolled Synthesis of Sulfonyl 2,5-Diaryltetrahydrofurans

M.-Y. Chang*
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, eMail: mychang@kmu.edu.tw
,
Y.-C. Cheng
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, eMail: mychang@kmu.edu.tw
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 24. November 2015

Accepted after revision: 23. Januar 2016

Publikationsdatum:
04. März 2016 (online)


Abstract

BF3·OEt2-mediated stereocontrolled annulation of 4-alkenols affords sulfonyl 2,5-diaryltetrahydrofurans in good yields. The key synthetic route combines the facile stereoselective reduction of α-styryl-β-ketosulfones and an intramolecular Friedel–Crafts electrophilic cyclization of the resulting 4-alkenols. A plausible mechanism has been studied and proposed.

Supporting Information

 
  • References and Notes


    • For reviews on the synthesis of tetrahydrofurans, see:
    • 1a Rjabovs V, Turks M. Tetrahedron 2013; 69: 10693
    • 1b Bellur E, Feist H, Langer P. Tetrahedron 2007; 63: 10865
    • 1c Lorente A, Lamariano-Merketegi J, Albericio F, Alvarez M. Chem. Rev. 2013; 113: 4567
    • 1d Jalce G, Franck X, Figadere B. Tetrahedron: Asymmetry 2009; 20: 2537
    • 1e Wolfe JP, Hay MB. Tetrahedron 2007; 63: 261

      For representative examples of 2,5-diaryltetrahydrofuran skeleton in natural products, e.g. manassantin A and B, see:
    • 2a Hanessian S, Reddy GJ, Chahal N. Org. Lett. 2006; 8: 5477
    • 2b Kim H, Kasper AC, Moon EJ, Park Y, Wooten CM, Dewhirst MW, Hong J. Org. Lett. 2009; 11: 89

    • For virgatusin, see:
    • 2c Akindele T, Marsden SP, Cumming JG. Org. Lett. 2005; 17: 3685
    • 2d Kim H, Wooten CM, Park Y, Hong J. Org. Lett. 2007; 9: 3965
    • 2e Jahn U, Rudakov D. Org. Lett. 2006; 8: 4481
    • 2f Martinet S, Meou A, Brun P. Eur. J. Org. Chem. 2009; 2306

    • For talaumidin, see:
    • 2g Harada K, Kubo M, Horiuchi H, Ishii A, Esumi T, Hioki H, Fukuyama Y. J. Org. Chem. 2015; 80: 7076

    • For MK-287, see:
    • 2h Girotra NN, Ponpipom MM, Acton JJ, Alberts AW, Bach TN, Ball RG, Bugianesi RL, Parsons WH. J. Med. Chem. 1992; 35: 3474
    • 2i Thompson AS, Tschaen DM, Simpson P, McSwine DJ, Reamer RA, Verhoeven TR, Shinkai I. J. Org. Chem. 1992; 57: 7044

    • During the preparation of this manuscript, Saikia and co-workers demonstrated the feasibility of this BF3·OEt2-mediated annulations, see:
    • 2j Sultana S, Devi NR, Saikia AK. Asian J. Org. Chem. 2015; 4: 1281
    • 2k Ghosh P, Deka MJ, Saikia AK. Tetrahedron 2016; 72: 690
    • 3a Chang M.-Y, Chen Y.-C, Chan C.-K. Tetrahedron 2014; 70: 8908
    • 3b Chang M.-Y, Cheng Y.-J, Lu Y.-J. Org. Lett. 2014; 16: 6252
    • 3c Chang M.-Y, Lu Y.-J, Cheng Y.-C. Tetrahedron 2015; 71: 1192
    • 3d Chang M.-Y, Cheng Y.-J, Lu Y.-J. Org. Lett. 2015; 17: 1264
    • 3e Chang M.-Y, Cheng Y.-J, Lu Y.-J. Org. Lett. 2015; 17: 3142
    • 3f Chang M.-Y, Cheng Y.-J. Org. Lett. 2015; 17: 5702

      For recent syntheses of β-ketosulfones, see:
    • 4a Pospisil J, Sato H. J. Org. Chem. 2011; 76: 2269
    • 4b Sreedhar B, Rawat VS. Synlett 2012; 23: 413
    • 4c Kumar A, Muthyala MK. Tetrahedron Lett. 2011; 52: 5368
    • 4d Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei W. J. Am. Chem. Soc. 2013; 135: 11481
    • 4e Tsui GC, Glenadel Q, Lau C, Lautens M. Org. Lett. 2011; 13: 208
    • 4f Zhou G, Ting PT, Aslanian RG. Tetrahedron Lett. 2010; 51: 939
    • 4g Tang X, Huang L, Xu Y, Yang J, Wu W, Jiang H. Angew. Chem. Int. Ed. 2014; 53: 4205
    • 4h Chawla R, Singh AK, Yadav LD. S. Eur. J. Org. Chem. 2014; 10: 2032
    • 4i Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2014; 55: 4742
    • 4j Shi X, Ren X, Ren Z, Li J, Wang Y, Yang S, Gu J, Gao Q, Huang G. Eur. J. Org. Chem. 2014; 10: 5083
    • 4k Xuan J, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2014; 20: 3045
    • 5a Mengel A, Reiser O. Chem. Rev. 1999; 99: 1191
    • 5b Gung BW. Tetrahedron 1996; 52: 5263
    • 5c Ager DJ, East MB. Tetrahedron 1992; 48: 2803
  • 6 CCDC 1429280 (6a) and 1434699 (6b) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
  • 7 Representative Synthetic Procedure of Skeleton 6: NaBH4 (100 mg, 3.0 mmol) was added to a solution of skeleton 4 (1.0 mmol) in a co-solvent of THF (5 mL) and MeOH (5 mL) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and the solvent was concentrated. The residue was diluted with H2O (10 mL) and the mixture was extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford the crude product. Without further purification, BF3·OEt2 (142 mg, 1.0 mmol) was added to a solution of the resulting skeleton 5 in CH2Cl2 (5 mL) at 25 °C. The reaction mixture was stirred at 25 °C for 20 h. The reaction mixture was concentrated and the residue was diluted with H2O (10 mL) and the mixture was extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford the crude product under reduced pressure. Purification on silica gel (hexanes–EtOAc, 8:1 to 3:1) yielded the skeleton 6. Compound 6a: yield: 75% (294 mg); colorless solid; mp 173–174 °C (recrystallized from hexanes and EtOAc). 1H NMR (400 MHz, CDCl3): δ = 7.39–7.42 (m, 4 H), 7.16–7.30 (m, 8 H), 7.07 (d, J = 8.0 Hz, 2 H), 5.12 (d, J = 8.0 Hz, 1 H), 3.99 (q, J = 8.0 Hz, 1 H), 2.88 (dd, J = 1.2, 8.4 Hz, 2 H), 2.37 (s, 3 H), 1.78 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.27, 143.82, 136.26, 135.70, 129.36 (2 ×), 128.62 (2 ×), 128.50 (2 ×), 128.14, 127.82 (2 ×), 127.58 (2 ×), 127.18, 124.50 (2 ×), 83.80, 79.46, 67.64, 40.14, 30.31, 21.48. HRMS (ESI): m/z [M+ + 1] calcd for C24H25O3S: 393.1524; found: 393.1530. Anal. Calcd for C24H24O3S: C, 73.44; H, 6.16. Found: C, 73.70; H, 6.28. Single-crystal X-ray diagram: crystal of compound 6a was grown by slow diffusion of EtOAc into a solution of compound 6a in CH2Cl2 to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a = 13.9520(8) Å, b = 14.5100(7) Å, c = 11.1921(6) Å, V = 2096.6(2) Å3, Z = 4, d calcd = 1.243 mg/cm3, F(000) = 832, 2θ range 1.577–26.410°, R indices (all data) R1 = 0.0729, wR2 = 0.1568. Compound 6b: yield: 70% (287 mg); colorless solid; mp 154–155 °C (recrystallized from hexanes and EtOAc). 1H NMR (400 MHz, CDCl3): δ = 7.50–7.53 (m, 2 H), 7.37–7.42 (m, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 7.27–7.29 (m, 3 H), 7.15 (d, J = 8.0 Hz, 2 H), 6.89–6.94 (m, 2 H), 5.49 (d, J = 8.0 Hz, 1 H), 4.39 (q, J = 8.0 Hz, 1 H), 2.85 (dd, J = 10.0, 12.8 Hz, 1 H), 2.56 (dd, J = 8.4, 12.8 Hz, 1 H), 2.39 (s, 3 H), 1.57 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.55 (d, J = 244.8 Hz), 146.02, 144.22, 136.30, 134.10 (d, J = 3.0 Hz), 130.26 (d, J = 8.4 Hz, 2 ×), 129.45 (2 ×), 128.24 (2 ×), 127.77 (2 ×), 127.00, 124.48 (2 ×), 114.32 (d, J = 22.0. Hz, 2 ×), 83.24, 78.72, 67.46, 40.53, 27.80, 21.41. HRMS (ESI): m/z [M+ + 1] calcd for C24H24FO3S: 411.1430; found: 411.1435. Single-crystal X-ray diagram: crystal of compound 6b was grown by slow diffusion of EtOAc into a solution of compound 6b in CH2Cl2 to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a = 5.8096(3) Å, b = 15.7969(8) Å, c = 22.8181(12) Å, V = 2093.57(19) Å3, Z = 4, d calcd = 1.302 mg/cm3, F(000) = 864, 2θ range 1.568–26.542°, R indices (all data) R1 = 0.0645, wR2 = 0.1086.