Synlett 2015; 26(19): 2617-2622
DOI: 10.1055/s-0035-1560522
synpacts
© Georg Thieme Verlag Stuttgart · New York

Enzyme-Responsive PEG–Dendron Hybrids as a Platform for Smart Nanocarriers

Roey J. Amir*
a   Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
b   Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel   eMail: amirroey@tau.ac.il
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 14. September 2015

Accepted after revision: 16. Oktober 2015

Publikationsdatum:
29. Oktober 2015 (online)


Abstract

Disease-associated enzymes are highly promising stimuli for the enzyme-responsive disassembly of smart micellar carriers of drugs and imaging probes. Together with this great potential, the use of enzymes raises many challenges compared to other types of stimuli such as pH, temperature, or light. Unlike these nearly ‘dimensionless’ stimuli, an enzyme, which can be of an approximately similar size as the carrier, must reach the enzyme-sensitive moieties that are spread along the backbone of the polymer and might be hidden inside the hydrophobic cores of the self-assembled structures. Recent publications demonstrate the utilization of well-defined dendron-based hybrids as highly modular tools to study the molecular mechanisms of enzymatically induced disassembly. A simple polyethylene glycol–dendron hybrid bearing hydrophobic enzymatically cleavable end-groups allowed us to address key questions in this field. Using this system, we obtained high molecular resolution of the enzymatically induced disassembly process and were able to evaluate whether the enzyme penetrates through the micelle’s shell into its core, or interacts with the polymers in their monomeric form only, which is in equilibrium with the assembled state. The kinetic studies clearly indicate an equilibrium-based mechanism that fits very well with kinetic data for other enzyme-responsive polymeric amphiphiles.

 
  • References

  • 1 Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC. J. Am. Chem. Soc. 2015; 137: 2140
  • 2 Shim MS, Kwon YJ. Adv. Drug Delivery Rev. 2012; 64: 1046
  • 3 Roy D, Cambre J, Sumerlin B. Prog. Polym. Sci. 2010; 35: 278
  • 4 Cohen Stuart MA, Huck WT. S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater. 2010; 9: 101
  • 5 Rodríguez-Hernández J, Lecommandoux S. J. Am. Chem. Soc. 2005; 127: 2026
  • 6 Lundberg P, Lynd NA, Zhang Y, Zeng X, Krogstad DV, Paffen T, Malkoch M, Nyström AM, Hawker CJ. Soft Matter 2013; 9: 82
  • 7 Pietsch C, Schubert US, Hoogenboom R. Chem. Commun. 2011; 47: 8750
  • 8 Qiao J, Qi L, Shen Y, Zhao L, Qi C, Shangguan D, Mao L, Chen Y. J. Mater. Chem. 2012; 22: 11543
  • 9 Gohy J.-F, Zhao Y. Chem. Soc. Rev. 2013; 42: 7117
  • 10 Loh XJ, Del Barrio J, Toh PP. C, Lee T.-C, Jiao D, Rauwald U, Appel EA, Scherman OA. Biomacromolecules 2012; 13: 84
  • 11 Schmaljohann D. Adv. Drug Delivery Rev. 2006; 58: 1655
  • 12 Roy D, Cambre JN, Sumerlin BS. Chem. Commun. 2009; 2106
  • 13 Werz PD. L, Kainz J, Rieger B. Macromolecules 2015; 48: 6433
  • 14 Hu Q, Katti PS, Gu Z. Nanoscale 2014; 6: 12273
  • 15 De la Rica R, Aili D, Stevens MM. Adv. Drug Delivery Rev. 2012; 64: 967
  • 16 Wang C, Chen Q, Wang Z, Zhang X. Angew. Chem. Int. Ed. 2010; 49: 8612
  • 17 Amir RJ, Zhong S, Pochan DJ, Hawker CJ. J. Am. Chem. Soc. 2009; 131: 13949
  • 18 Ramireddy RR, Raghupathi KR, Torres DA, Thayumanavan S. New J. Chem. 2012; 36: 340
  • 19 Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV. Biomater. Sci. 2013; 1: 11
  • 20 Phillips DJ, Wilde M, Greco F, Gibson MI. Biomacromolecules 2015; 16: 3256
  • 21 Azagarsamy MA, Sokkalingam P, Thayumanavan S. J. Am. Chem. Soc. 2009; 131: 14184
  • 22 Wang H, Raghupathi KR, Zhuang J, Thayumanavan S. ACS Macro Lett. 2015; 4: 422
  • 23 Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S. Chem. Soc. Rev. 2013; 42: 7421
  • 24 Harnoy AJ, Rosenbaum I, Tirosh E, Ebenstein Y, Shaharabani R, Beck R, Amir RJ. J. Am. Chem. Soc. 2014; 136: 7531
  • 25 Rosenbaum I, Harnoy AJ, Tirosh E, Buzhor M, Segal M, Frid L, Shaharabani R, Avinery R, Beck R, Amir RJ. J. Am. Chem. Soc. 2015; 137: 2276
  • 26 Gitsov I, Wooley KL, Fréchet JM. J. Angew. Chem., Int. Ed. Engl. 1992; 31: 1200
  • 27 Gitsov I. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 5295
  • 28 Sousa-Herves A, Riguera R, Fernandez-Megia E. New J. Chem. 2012; 36: 205
  • 29 Whitton G, Gillies ER. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 148
  • 30 Gillies ER, Jonsson TB, Fréchet JM. J. J. Am. Chem. Soc. 2004; 126: 11936
  • 31 Gillies ER, Fréchet JM. J. Bioconjugate Chem. 2005; 16: 361
  • 32 Walter MV, Malkoch M. Chem. Soc. Rev. 2012; 41: 4593
  • 33 Albertazzi L, Mickler FM, Pavan GM, Salomone F, Bardi G, Panniello M, Amir E, Kang T, Killops KL, Bräuchle C, Amir RJ, Hawker CJ. Biomacromolecules 2012; 13: 4089
  • 34 Antoni P, Robb MJ, Campos L, Montanez M, Hult A, Malmström E, Malkoch M, Hawker CJ. Macromolecules 2010; 43: 6625
  • 35 Hoogenboom R. Angew. Chem. Int. Ed. 2010; 49: 3415
  • 36 Massi A, Nanni D. Org. Biomol. Chem. 2012; 10: 3791
  • 37 Tucker BS, Getchell SG, Hill MR, Sumerlin BS. Polym. Chem. 2015; 6: 4258
  • 38 Habraken GJ. M, Peeters M, Thornton PD, Koning CE, Heise A. Biomacromolecules 2011; 12: 3761
  • 39 Fuchs AV, Kotman N, Andrieu J, Mailänder V, Weiss CK, Landfester K. Nanoscale 2013; 5: 4829
  • 40 Raghupathi KR, Azagarsamy MA, Thayumanavan S. Chem. Eur. J. 2011; 17: 11752