Synlett 2016; 27(06): 941-945
DOI: 10.1055/s-0035-1560548
letter
© Georg Thieme Verlag Stuttgart · New York

C 2-Symmetric Chiral Sulfoxide-Mediated Intermolecular Interrupted Pummerer Reaction for Enantioselective Construction of C3a-Substituted Pyrroloindolines

Masanori Tayu
Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan   Email: kawasaki@my-pharm.ac.jp
,
Yui Suzuki
Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan   Email: kawasaki@my-pharm.ac.jp
,
Kazuhiro Higuchi*
Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan   Email: kawasaki@my-pharm.ac.jp
,
Tomomi Kawasaki*
Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan   Email: kawasaki@my-pharm.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 04 October 2015

Accepted after revision: 22 October 2015

Publication Date:
07 January 2016 (online)


Abstract

The first example of an enantioselective intermolecular interrupted Pummerer reaction has been developed by the utilization of a C 2-symmetric chiral sulfoxide. The reaction was used for the enantioselective synthesis of C3a-substituted pyrroloindolines in a one-pot procedure starting from tryptamine. The synthetic utility of the reaction was further demonstrated by its application to the highly concise total synthesis of (+)-psychotriasine.

Supporting Information

 
  • References and Notes


    • For reviews of chiral sulfoxides in C–C bond formation, see:
    • 2a Walker AJ. Tetrahedron: Asymmetry 1992; 3: 961
    • 2b Delouvrié B, Fensterbank L, Nájera F, Malacria M. Eur. J. Org. Chem. 2002; 3507
    • 2c Hanquet G, Colobert F, Lanners S, Solladie G. ARKIVOC 2003; (vii): 328
    • 2d Pellissier H. Tetrahedron 2006; 62: 5559

      For nucleophilic additions to carbonyl groups, see:
    • 3a Nakamura S, Takemoto H, Ueno Y, Toru T, Kakumoto T, Hagiwara T. J. Org. Chem. 2000; 65: 469
    • 3b García Ruano JL, Aranda MT, Aguirre JM. Tetrahedron 2004; 60: 5383
    • 3c Colobert F, Obringer M, Solladié G. Eur. J. Org. Chem. 2006; 1455

      For nucleophilic additions to imine groups, see:
    • 4a Zucca C, Bravo P, Corradi E, Meille SV, Volonterio A, Zanda M. Molecules 2001; 6: 424
    • 4b Midura WH. Tetrahedron Lett. 2007; 48: 3907

      For conjugate additions, see:
    • 5a García Ruano JL, Cifuentes García M, Laso NM, Martín Castro AM, Rodríguez Ramos JH. Angew. Chem. Int. Ed. 2001; 40: 2507
    • 5b Satoh T, Yoshida M, Ota H. Tetrahedron Lett. 2001; 42: 9241
    • 5c Satoh T, Yoshida M, Takahashi Y, Ota H. Tetrahedron: Asymmetry 2003; 14: 281
    • 5d Raghavan S, Rajender A. Tetrahedron 2004; 60: 5059
    • 5e Maezaki N, Sawamoto H, Suzuki T, Yoshigami R, Tanaka T. J. Org. Chem. 2004; 69: 8387

      For cycloadditions, see:
    • 6a García Ruano JL, Fraile A, Martín MR, González G, Fajardo C. J. Org. Chem. 2008; 73: 8484
    • 6b García Ruano JL, Núñez AJr, Martín MR, Fraile A. J. Org. Chem. 2008; 73: 9366
    • 6c García Ruano JL, Alonso M, Cruz D, Fraile A, Martín MR, Peromingo MT, Tito A, Yuste F. Tetrahedron 2008; 64: 10546
    • 6d Cruz D, Yuste F, Martín MR, Tito A, García Ruano JL. J. Org. Chem. 2009; 74: 3820
  • 7 For radical additions, see: Toru T, Watanabe Y, Mase N, Tsusaka M, Hayakawa T, Ueno Y. Pure Appl. Chem. 1996; 68: 711

    • For recent reports and reviews of chiral sulfoxides in metal catalysts, see:
    • 8a Wang D, Cao P, Wang B, Jia T, Lou Y, Wang M, Liao J. Org. Lett. 2015; 17: 2420
    • 8b Chen L.-Y, Yu X.-Y, Chen J.-R, Feng B, Qi Y.-H, Xiao W.-J. Org. Lett. 2015; 17: 1381
    • 8c Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
    • 8d Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
    • 9a Jonsson E. Tetrahedron Lett. 1967; 38: 3675
    • 9b Oae S, Kise M. Bull. Chem. Soc. Jpn. 1970; 43: 1416
    • 9c Numata T, Itoh O, Oae S. Tetrahedron Lett. 1979; 21: 1869
    • 9d Kita Y, Shibata N, Yoshida N. Tetrahedron Lett. 1993; 34: 4063
    • 9e Kita Y, Shibata N, Kawano N, Fukui S, Fujimori C. Tetrahedron Lett. 1994; 35: 3575
    • 9f Kita Y, Shibata N, Kawano N, Tohjo T, Fujimori C, Matsumoto K. Tetrahedron Lett. 1995; 36: 115
    • 9g Crucianelli M, Bravo P, Arnone A, Corradi E, Meille SV, Zanda M. J. Org. Chem. 2000; 65: 2965
    • 9h García Ruano JL, García Paredes C. Tetrahedron Lett. 2000; 41: 261
    • 9i García Ruano JL, Alemán J, Padwa A. Org. Lett. 2004; 6: 1757
    • 9j Feldman KS, Karatjas AG. Org. Lett. 2006; 8: 4137
    • 9k Nagao Y, Miyamoto S, Miyamoto M, Takeshige H, Hayashi K, Sano S, Shiro M, Yamaguchi K, Sei Y. J. Am. Chem. Soc. 2006; 128: 9722
    • 10a Kawasaki T, Suzuki H, Sakata I, Nakanishi H, Sakamoto M. Tetrahedron Lett. 1997; 38: 3251
    • 10b Higuchi K, Tayu M, Kawasaki T. Chem. Commun. 2011; 47: 6728
    • 10c Tayu M, Higuchi K, Inaba M, Kawasaki T. Org. Biomol. Chem. 2013; 11: 496
    • 10d Tayu M, Higuchi K, Ishizaki T, Kawasaki T. Org. Lett. 2014; 16: 3613
    • 10e Tayu M, Ishizaki T, Higuchi K, Kawasaki T. Org. Biomol. Chem. 2015; 13: 3863
  • 11 The syntheses of C 2-symmetric sulfoxides 3ac are described in the Supporting Information.
  • 12 The determination of the absolute configuration of 4a is described in the Supporting Information. Tentative absolute configurations of other products were estimated from that of 4a.
  • 13 Synthesis of 4; General Procedure: Acid anhydride (0.20 mmol, 1.0 equiv) was added to a solution of 2 (0.20 mmol, 1.0 equiv) and sulfoxide 3c (26 μL, 0.20 mmol, 1.0 equiv) in EtCN (1.0 mL, 0.20 M) at –78 °C under an argon atmosphere. After stirring for 10 min, DTBP (90 μL, 0.40 mol, 2.0 equiv) was added and the reaction mixture was stirred for a further 10 min. N-Methylindole (25 μL, 0.20 mmol, 1.0 equiv) was added and the reaction mixture was warmed to 0 °C over 10 min with stirring. The reaction mixture was neutralized with saturated aqueous NaHCO3 at 0 °C, and then extracted three times with DCM. The organic layer was washed with brine, dried over MgSO4, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane–EtOAc) to afford the corresponding pyrroloindoline 4.
  • 14 Analytical Data for Compound (–)-4a: The ee was determined by chiral HPLC analysis to be 94% ee {CHIRALPAK IA column; hexane–2-propanol (95:5); Rt  = 19 (+), 27 (–) min}; [α] d 28 −155.7 (c = 0.07, CHCl3). IR (CHCl3): 1692, 1493, 1452 cm–1. 1H NMR (500 MHz, DMSO-d 6, 80 °C): δ = 2.36 (ddd, J = 12.5, 6.3, 3.5 Hz, 1 H), 2.78 (ddd, J = 12.5, 9.0, 9.0 Hz, 1 H), 3.15–3.28 (m, 1 H), 3.50 (s, 3 H), 3.70 (s, 3 H), 3.94 (ddd, J = 10.5, 7.5, 3.0 Hz, 1 H), 4.58 (d, J = 16.2 Hz, 1 H), 4.69 (d, J = 16.2 Hz, 1 H), 5.84 (s, 1 H), 6.45 (d, J = 7.6 Hz, 1 H), 6.57 (dd, J = 7.6, 7.6 Hz, 1 H), 6.83 (dd, J = 7.6, 7.6 Hz, 1 H), 6.93 (d, J = 7.6 Hz, 1 H), 6.97–7.07 (m, 2 H), 7.09 (dd, J = 7.6, 7.6 Hz, 1 H), 7.11 (s, 1 H), 7.16–7.22 (m, 1 H), 7.22–7.28 (m, 2 H), 7.28–7.32 (m, 2 H), 7.34 (d, J = 7.6 Hz, 1 H). 13C NMR (125 MHz, DMSO-d 6, 80 °C): δ = 31.8, 37.6, 45.0, 49.1, 51.6, 55.1, 86.6, 105.7, 109.4, 116.3, 117.0, 118.2, 119.0, 120.8, 123.0, 125.3, 126.2, 126.48, 126.52, 126.6, 127.7, 132.6, 137.4, 138.7, 148.9, 154.6. MS (EI): m/z (%) = 437 (32) [M]+, 405 (22), 350 (17), 349 (100), 335 (22), 258 (20), 257 (41), 91 (10). HRMS (EI): m/z calcd for C28H27N3O2: 437.2103; found: 437.2102.
    • 15a Trost BM, Arndt HC. J. Am. Chem. Soc. 1973; 95: 5288
    • 15b Oae S, Furukawa N. Adv. Heterocycl. Chem. 1990; 48: 1
    • 15c Sato S, Furukawa N. Top. Curr. Chem. 1999; 205: 89
  • 16 One-pot oxidation was carried out because of the instability of 11 during purification.

    • For isolation of the natural product, see:
    • 17a Zhou H, He H.-P, Wang Y.-H, Hao X.-J. Helv. Chim. Acta 2010; 93: 1650
    • 17b For racemic synthesis, see: Newhouse T, Lewis CA, Eastman KJ, Baran PS. J. Am. Chem. Soc. 2010; 132: 7119
    • 17c For enantioselective synthesis, see: Li Q, Xia T, Yao L, Deng H, Liao X. Chem. Sci. 2015; 6: 3599