Synlett 2016; 27(06): 821-830
DOI: 10.1055/s-0035-1560550
account
© Georg Thieme Verlag Stuttgart · New York

Exploiting 3,3-Difluoropropenes for the Synthesis of Monofluoroalkenes

Myriam Drouin
,
Jean-Denys Hamel
,
Jean-François Paquin*
Further Information

Publication History

Received: 28 September 2015

Accepted after revision: 26 October 2015

Publication Date:
28 December 2015 (online)


Abstract

In this account, we summarize our work on the synthesis of monofluoroalkenes starting from difluoropropenes.

1 Introduction

2 Metal-Catalyzed Transformations of 3,3-Difluoropropenes

2.1 Palladium Catalysis

2.2 Platinum Catalysis

3 Metal-Free Reactions

3.1 Organolithium Reagents

3.2 Lithium Amides

4 Conclusions

 
  • References

  • 1 Both authors contributed equally to this work.

    • For selected recent examples, see:
    • 2a Chang W, Mosley RT, Bansal S, Keilman M, Lam AM, Furman PA, Otto MJ, Sofia MJ. Bioorg. Med. Chem. Lett. 2012; 22: 2938
    • 2b Choi WJ, Chung H.-J, Chandra G, Alexander V, Zhao LX, Lee HW, Nayak A, Majik MS, Kim HO, Kim J.-H, Lee YB, Ahn CH, Lee SK, Joeng LS. J. Med. Chem. 2012; 55: 4521
    • 2c Malo-Forest B, Landelle G, Roy J.-A, Lacroix J, Gaudreault RC, Paquin J.-F. Bioorg. Med. Chem. Lett. 2013; 23: 1712
    • 2d Huleatt PB, Khoo ML, Chua YY, Tan TW, Liew RS, Balogh B, Deme R, Gölöncsér F, Magyar K, Sheela DP, Ho HK, Sperlágh B, Mátyus P, Chai CL. L. J. Med. Chem. 2015; 58: 1400
    • 2e Cheng J, Giguère PM, Onajole OK, Lv W, Gaisin A, Gunosewoyo H, Schmerberg CM, Pogorelov VM, Rodriguiz RM, Vistoli G, Wetsel WC, Roth BL, Kozikowski AP. J. Med. Chem. 2015; 58: 1992
    • 2f Hohlfeld K, Wegner JK, Kesteleyn B, Linclau B, Unge J. J. Med. Chem. 2015; 58: 4029

      For reviews, see:
    • 3a Landelle G, Turcotte-Savard M.-O, Bergeron M, Paquin J.-F. Chem. Soc. Rev. 2011; 40: 2867
    • 3b Yanai H, Taguchi T. Eur. J. Org. Chem. 2011; 5939
    • 3c Hara S. Top. Curr. Chem. 2012; 327: 59
    • 3d Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073

      For another synthetic approach to monofluoroalkenes developed in our group, see:
    • 4a Landelle G, Champagne P.-A, Barbeau X, Paquin J.-F. Org. Lett. 2009; 11: 681
    • 4b Landelle G, Turcotte-Savard M.-O, Marterer J, Champagne PA, Paquin J.-F. Org. Lett. 2009; 11: 5406
    • 4c Landelle G, Turcotte-Savard M.-O, Angers L, Paquin J.-F. Org. Lett. 2011; 13: 1568
    • 4d Turcotte-Savard M.-O, Paquin J.-F. Org. Biomol. Chem. 2013; 11: 1367
  • 5 For a short review on the activation of allylic or benzylic fluorides, see: Unzner TA, Magauer T. Tetrahedron Lett. 2015; 56: 877
  • 6 Pigeon X, Bergeron M, Barabé F, Dubé P, Frost HN, Paquin J.-F. Angew. Chem. Int. Ed. 2010; 49: 1123
  • 7 The origin of this project was discussed in greater details in a Synpacts article, see: Paquin J.-F. Synlett 2011; 289
  • 8 Hintermann L, Läng F, Maire P, Togni A. Eur. J. Inorg. Chem. 2006; 1397
  • 9 Hazari A, Gouverneur V, Brown JM. Angew. Chem. Int. Ed. 2009; 48: 1296
  • 10 Blessley G, Holden P, Walker M, Brown JM, Gouverneur V. Org. Lett. 2012; 14: 2754
  • 11 Peters D. J. Chem. Phys. 1963; 38: 561

    • For examples, see
    • 12a Keinan E, Roth Z. J. Org. Chem. 1983; 48: 1769
    • 12b Keinan E, Peretz M. J. Org. Chem. 1983; 48: 5302
    • 12c Konno T, Nagata K, Ishihara T, Yamanaka H. J. Org. Chem. 2002; 67: 1768
    • 12d Xu J, Qiu X.-L, Qing F.-L. Beilstein J. Org. Chem. 2008; 4: No. 18
    • 13a Seebach D. Angew. Chem., Int. Ed. Engl. 1990; 29: 1320
    • 13b Schlosser M. Angew. Chem. Int. Ed. 1998; 110: 1496
  • 14 During the course of our early investigation, Fuji reported the Pd-catalyzed reductive defluorination of 3,3-difluoropropenes. This indicated that the oxidative addition step should not be a problem, see: Narumi T, Tomita K, Inokuchi E, Kobayashi K, Oishi S, Ohno H, Fuji N. Org. Lett. 2007; 9: 3465

    • For selected examples of Tsuji–Trost reactions with aromatic amines, see:
    • 15a Yang S.-C, Yu C.-L, Tsai Y.-C. Tetrahedron Lett. 2000; 41: 7097
    • 15b Kimura M, Futamata M, Shibata K, Tamaru Y. Chem. Commun. 2003; 234
    • 15c Nishikata T, Lipshutz BH. Org. Lett. 2009; 11: 2377
    • 15d Wang Y, Vaismaa MJ. P, Hämäläinen AM, Tois JE, Franzén R. Tetrahedron: Asymmetry 2011; 22: 524
    • 15e Wang Y, Liu L, Wang D, Chen Y.-J. Org. Biomol. Chem. 2012; 10: 6908
    • 15f Banerjee D, Jagadeesh RV, Junge K, Junge H, Beller M. ChemSusChem 2012; 5: 2039
    • 15g Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
    • 15h Feng B, Cheng H.-G, Chen J.-R, Deng Q.-H, Lu L.-Q, Xiao W.-J. Chem. Commun. 2014; 50: 9550
    • 15i Hemelaere R, Desroches J, Paquin J.-F. Org. Lett. 2015; 17: 1770
    • 15j Chanda K, Rej S, Liu S.-Y, Huang MH. ChemCatChem 2015; 7: 1813
  • 16 Bergeron M, Johnson T, Paquin J.-F unpublished results.
  • 17 Bergeron M, Paquin J.-F unpublished results.
  • 18 Hamel J.-D, Drouin M, Paquin J.-F. J. Fluorine Chem. 2015; 174: 81
  • 19 Benedetto E, Keita M, Tredwell M, Hollingworth C, Brown JM, Gouverneur V. Organometallics 2012; 31: 1408
  • 20 Hamel J.-D, Paquin J.-F unpublished results.

    • For selected examples, see:
    • 21a Fontanelli R, Sianesim D. Ann. Chim. 1965; 55: 862
    • 21b Hiyama T, Obayashi M, Sawahata M. Tetrahedron Lett. 1983; 24: 7113
    • 21c Bergstrom DE, Ng MW, Wong JJ. J. Org. Chem. 1983; 48: 1702
    • 21d Fuchikami T, Shibata Y, Suzuki Y. Tetrahedron Lett. 1986; 27: 3173
    • 21e Kitazume T, Ohnogi T. Synthesis 1988; 614
    • 21f Kitazume T, Ohnogi T, Miyauchi H, Yamazaki T. J. Org. Chem. 1989; 54: 5630
    • 21g Kendrick DA, Kolb M. J. Fluorine Chem. 1989; 45: 265
    • 21h Bégué J.-P, Bonnet-Delpon D, Rock MH. Tetrahedron Lett. 1995; 36: 5003
    • 21i Bégué J.-P, Bonnet-Delpon D, Rock MH. J. Chem. Soc., Perkin Trans. 1 1996; 1409
    • 21j Ichikawa J, Ishibashi Y, Fukui H. Tetrahedron Lett. 2003; 44: 707
    • 21k Uneyama K. Organofluorine Chemistry . Blackwell Publishers; Oxford: 2006
    • 21l Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119

      For selected recent examples, see:
    • 22a Otaka A, Mitsuyama E, Watanabe H, Tamarura H, Fujii N. Chem. Commun. 2000; 1081
    • 22b Otaka A, Watanabe H, Mitsuyama E, Yukimasa A, Tamamura H, Fujii N. Tetrahedron Lett. 2001; 42: 285
    • 22c Otaka A, Watanabe H, Yukimasa A, Oishi S, Tamamura H, Fujii N. Tetrahedron Lett. 2001; 42: 5443
    • 22d Okada M, Nakamura Y, Saito A, Horikawa H, Taguchi T. Tetrahedron Lett. 2002; 43: 5845
    • 22e Nakamura Y, Okada M, Horikawa H, Taguchi T. J. Fluorine Chem. 2002; 117: 143
    • 22f Okada M, Namakura Y, Saito A, Horikawa H, Taguchi T. Chem. Lett. 2002; 28
    • 22g Otaka A, Watanabe H, Kinoshita T, Oishi S, Tamamura H, Fujii N. J. Org. Chem. 2004; 69: 1634
    • 22h Nakamura Y, Okada M, Saito A, Horikawa H, Koura M, Saito A, Taguchi T. Tetrahedron 2005; 61: 5741
    • 22i Yamaki Y, Shigenaga A, Li J, Shimohigashi Y, Otaka A. J. Org. Chem. 2009; 74: 3278
    • 22j Yamaki Y, Shigenaga A, Tomita K, Narumi T, Fujii N, Otaka A. J. Org. Chem. 2009; 74: 3272
    • 22k Yanai H, Okada H, Sato A, Okada M, Taguchi T. Tetrahedron Lett. 2011; 52: 2997
  • 23 Bergeron M, Johnson T, Paquin J.-F. Angew. Chem. Int. Ed. 2011; 50: 11112
  • 25 Bergeron M, Guyader D, Paquin J.-F. Org. Lett. 2012; 14: 5888
  • 26 Wolfe JP, Åhman J, Sadighi JP, Singer RA, Buchwald SL. Tetrahedron Lett. 1997; 38: 6367
  • 27 Nagano T, Kobayashi S. J. Am. Chem. Soc. 2008; 131: 4200
  • 28 McDonald IA, Bey P. Tetrahedron Lett. 1985; 26: 3807

    • For selected recent examples, see:
    • 29a Kirihare M, Takuwa T, Takizawa S, Momose T, Nemoto H. Tetrahedron 2000; 56: 8275
    • 29b Ramachandra PV, Chatterjee A. Org. Lett. 2008; 10: 1195
    • 29c Pigeon X, Bergeron M, Barabé F, Dubé P, Frost HN, Paquin J.-F. Angew. Chem. Int. Ed. 2010; 49: 1123
    • 29d Min Q.-Q, Yin Z, Feng Z, Guo W.-H, Zhang X. J. Am. Chem. Soc. 2014; 136: 1230