Synlett 2016; 27(01): 131-135
DOI: 10.1055/s-0035-1560805
letter
© Georg Thieme Verlag Stuttgart · New York

Methyl Hydrazinocarboxylate as a Practical Alternative to Hydrazine in the Wolff–Kishner Reaction

Philippa B. Cranwell*
,
Andrew T. Russell*
,
Christopher D. Smith*
Further Information

Publication History

Received: 28 September 2015

Accepted: 04 October 2015

Publication Date:
20 October 2015 (online)


Dedicated to Professor Steven V. Ley on the occasion of his 70th birthday.

Abstract

Herein we describe a facile protocol for the reduction of aromatic ketones and aldehydes to the corresponding methylene unit. The procedure involves isolation of a carbomethoxyhydrazone intermediate that is easily decomposed to the reduced product without the requirement for large quantities of pernicious hydrazine.

Supporting Information

 
  • References and Notes

  • 1 All authors contributed an equal amount of work.
  • 2 Kishner NJ. Russ. Phys. Chem. Soc. 1911; 43: 582
  • 3 Wolff L. J. Liebigs Ann. Chem. 1912; 394: 86
    • 4a Wicha J. Reduction of Carbonic or Carboxylic Acids, Aldehydes, Ketones or Derivatives. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformation. Vol. 48. Hiemstra H. Thieme; Stuttgart: 2009: 97
    • 4b Hutchins RO, Hutchins MK. Reduction of C=X to CH2 by Wolff–Kishner and Other Hydrazone Methods. In Comprehensive Organic Synthesis. Vol. 8. Trost BM, Fleming I. Pergamon; Oxford: 1991: 327
    • 4c Reusch W In Reduction. Augustine RL. Marcel Dekker; New York: 1968: 171
    • 4d Huang-Minlon, Sci. Sinica 1961; 10: 711
    • 4e Buu-Hoï NP, Hoán N, Xuong ND. Recl. Trav. Chim. Pays-Bas 1952; 71: 285
    • 4f Todd D. The Wolff–Kishner Reduction. In Organic Reactions. Vol. 4. Adams E. John-Wiley and Sons; London: 1948: 378
    • 4g Bashore CG, Samardjiev IJ, Bordner J, Coe JW. J. Am. Chem. Soc. 2003; 125: 3268
  • 5 Staudinger H, Kupfer O. Ber. Dtsch. Chem. Ges. 1911; 44: 2194
    • 6a Huang-Minlon J. Am. Chem. Soc. 1946; 68: 2487
    • 6b Huang-Minlon J. Am. Chem. Soc. 1949; 71: 3301
  • 7 Soffer MD, Soffer MB, Sherk KW. J. Am. Chem. Soc. 1945; 67: 1435
  • 8 Herr CH, Whitmore FC, Schiessler RW. J. Am. Chem. Soc. 1945; 67: 2061
  • 9 Kuethe JT, Childers KG, Peng Z, Journet M, Humphrey GR, Vickery T, Bachert D, Lam TT. Org. Process Res. Dev. 2009; 13: 576
  • 10 Nagata W, Itazaki H. Chem. Ind. (London) 1964; 1194
  • 11 Cram DJ, Sahyun MR. V, Knox GR. J. Am. Chem. Soc. 1962; 84: 1734
  • 12 Szmant HH, Roman MN. J. Am. Chem. Soc. 1966; 88: 4034
  • 13 Grundon MF, Henbest HB, Scott MD. J. Chem. Soc. 1963; 1855
  • 14 Furrow ME, Myers AG. J. Am. Chem. Soc. 2004; 126: 5436
    • 15a Barton DH. R, Ives DA. J, Thomas BR. J. Chem. Soc. 1955; 2056
    • 15b Barton DH. R, O’Brien RE, Sternhell S. J. Chem. Soc. 1962; 470
    • 15c Barton DH. R, Bashiardes G, Fourrey J.-L. Tetrahedron Lett. 1983; 24: 1605
    • 15d Barton DH. R, Bashiardes G, Fourrey J.-L. Tetrahedron 1988; 44: 147
  • 16 Cook AH, Linstead RP. J. Chem. Soc. 1934; 946
  • 17 Quast H, Ivanova S, Peters E.-M, Peters K. Eur. J. Org. Chem. 2000; 507
  • 18 Szmant HH, Harmuth CM. J. Am. Chem. Soc. 1964; 86: 2909
  • 19 Zengin G, Huffman JW. Turk. J. Chem. 2006; 30: 139
    • 20a Balandin AA, Vaskevich DN. J. Gen. Chem. (USSR) 1936; 6: 1878
    • 20b Todd D. J. Am. Chem. Soc. 1949; 71: 1356
    • 21a Seibert W. Chem. Ber. 1947; 80: 494
    • 21b Seibert W. Chem. Ber. 1948; 81: 266
    • 22a Szmant HH. Angew. Chem., Int. Ed. Engl. 1968; 7: 120
    • 22b Szmant HH, Birke A, Lau MP. J. Am. Chem. Soc. 1977; 99: 1863
    • 22c Szmant HH, Alciaturi CE. J. Solution Chem. 1978; 7: 269
  • 23 Szmant HH, Alciaturi CE. J. Org. Chem. 1977; 42: 1081
  • 24 Yamabe S, Zeng G, Guan W, Sakaki S. Beilstein J. Org. Chem. 2014; 10: 259
  • 25 Taber DF, Stachel SJ. Tetrahedron Lett. 1992; 33: 903
    • 26a Garland K, Gan W, Depatie-Sicard C, Beauchemin AM. Org. Lett. 2013; 15: 4074
    • 26b Lavergne K, Bongers A, Betit L, Beauchemin AM. Org. Lett. 2015; 17: 3612
  • 27 Wiznycia AV, Desper J, Levy CJ. Chem. Commun. 2005; 4693
  • 28 General Procedure 1 To the aldehyde or ketone (1.0 g) in EtOH (5–10 mL) was added methyl hydrazinocarboxylate (1.3 equiv) followed by a few drops of AcOH. The reaction was heated at reflux overnight and then cooled to r.t. The product was either purified by recrystallization by dropwise addition of H2O, cooling upon ice, and collection of the product by Büchner filtration, or the solvent was removed in vacuo and the crude product purified by flash column chromatography to give the carbomethoxyhydrazones. General Procedure 2 KOH (4 equiv)* was dissolved in triethylene glycol (5 mL) and the solution was heated to 100 °C, forming an orange solution. The carbomethoxyhydrazone (0.5 g) was added in one portion, and the reaction was further heated at 140 °C for 4 h after which time the reaction was cooled, diluted with H2O, and extracted with Et2O. The organic phase was dried (MgSO4), filtered, and the solvent removed in vacuo. The crude product was purified by flash column chromatography to provide the desired products as pale yellow oils. *Add one more equivalent KOH per acidic group present. Representative Data for Methyl (E)-2-[1-(4-Bromophenyl)ethylidene]hydrazine-1-carboxylate (Table 1, entry 2) 1H NMR (400 MHz, CDCl3): δ = 7.98 (1 H, br s, NH), 7.63 (2 H, d, J = 8.8 Hz, CHAr), 7.49 (2 H, d, J = 8.8 Hz, CHAr), 3.88 (3 H, s, OCH3), 2.19 (3 H, s, CH3). 13C NMR (100 MHz, CDCl3): δ = 147.5 (C=N), 136.8 (CArBr), 131.6 (CArH), 127.9 (CArH), 123.6 (CAr), 53.3 (OCH3), 12.7 (CH3). IR (neat): νmax = 3196, 2945, 1730, 1702, 1539, 1484 cm–1. HRMS (ESI+): m/z was calcd for C10H12O2N2 79Br: 271.0077 [M + H]+; found: 271.0077. Mp 152–155 °C (EtOH). Representative Data for 1-Bromo-4-ethylbenzene (Table 1, entry 2) 1H NMR (400 MHz, CDCl3): δ = 7.83 (2 H, d, J = 8.4 Hz, CHAr), 7.06 (2 H, d, J = 8.4 Hz, CHAr), 2.59 (2 H, q, J = 7.6 Hz, CH2CH3), 1.21 (3 H, t, J = 7.6 Hz, CH2CH3). 13C NMR (100 MHz, CDCl3): δ = 143.2 (CAr), 131.3 (CArH), 129.6 (CArH), 119.3 (CArBr), 28.3 (CH2CH3), 15.5 (CH2CH3). IR (neat): νmax = 3022, 2963, 2928, 2871, 1485 cm–1.