Synlett 2016; 27(05): 702-713
DOI: 10.1055/s-0035-1561264
account
© Georg Thieme Verlag Stuttgart · New York

Organic Catalysts for Photocontrolled Polymerizations

Jacob T. Trotta
Cornell University, Department of Chemistry and Chemical Biology, Ithaca, NY 14853, USA   eMail: bpf46@cornell.edu
,
Brett P. Fors*
Cornell University, Department of Chemistry and Chemical Biology, Ithaca, NY 14853, USA   eMail: bpf46@cornell.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 28. Oktober 2015

Accepted: 24. November 2015

Publikationsdatum:
21. Januar 2016 (online)


Abstract

Photocontrolled polymerization is an emerging field of study in which catalysis with organic-based dyes has enabled the practical and inexpensive synthesis of well-defined, spatially and temporally controlled polymeric structures. Herein, we review the current progress in the development of organic catalysts for photoregulated polymerizations. In particular, we highlight advances in metal-free variants of photomediated controlled radical polymerizations. In addition, we examine how the unique properties of these catalysts allow the development of two mechanistically distinct chain-growth polymerizations controlled by light.

1 Introduction

2 Photocontrolled Atom-Transfer Radical Polymerization (ATRP)

3 Photocontrolled Reversible Addition–Fragmentation Chain Transfer (RAFT)

4 Reversible Complexation-Mediated Polymerization (RCMP)

5 Photocontrolled Ring-Opening Metathesis Polymerization (ROMP)

6 Conclusion and Future Outlook

 
  • References and Notes

  • 1 Leibfarth FA, Mattson KM, Fors BP, Collins HA, Hawker CJ. Angew. Chem. Int. Ed. 2013; 52: 199
  • 2 Yamago S, Nakamura Y. Polymer 2013; 54: 981
  • 3 Fors BP, Hawker CJ. Angew. Chem. Int. Ed. 2012; 51: 8850
  • 4 Mosnáček J, Ilčíková M. Macromolecules 2012; 45: 5859
  • 5 Tasdelen MA, Uygun M, Yagci Y. Macromol. Chem. Phys. 2010; 211: 2271
  • 6 Alfred NV, Jalapa NE, Morales SL, Ryabov AD, Le Lagadec R, Alexandrova L. Macromolecules 2012; 45: 8135
  • 7 Telitel S, Dumur F, Campolo D, Poly J, Gigmes D, Fouassier JP, Lalevée J. J. Polym. Sci., Part A: Polym. Chem. 2015; DOI: 10.1002/pola.27896
  • 8 Zhang T, Chen T, Amin I, Jordan R. Polym. Chem. 2014; 5: 4790
  • 9 Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, de Alaniz JR, Fors BP, Hawker CJ. J. Am. Chem. Soc. 2014; 136: 16096
  • 10 Pan X, Lamson M, Yan J, Matyjaszewski K. ACS Macro Lett. 2015; 4: 192
  • 11 Matyjaszewski K, Pintauer T, Gaynor S. Macromolecules 2000; 33: 1476
  • 12 Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
  • 13 Neumann M, Füldner S, König B, Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951
  • 14 Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
  • 15 Nguyen T, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588

    • Organic-based photoredox catalysts have also been utilized as photoinitiators, which is beyond the scope of this review. For examples, see:
    • 16a Perkowski AJ, You W, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 7580
    • 16b Xiao P, Zhang J, Dumur F, Tehfe MA, Morlet-Savary F, Graff B, Gigmes D, Fouassier JP, Lalevée J. Prog. Polym. Sci. 2015; 41: 32
  • 17 Pintauer T, Matyjaszewski K. Chem. Soc. Rev. 2008; 37: 1087
  • 18 Treat NJ, Fors BP, Kramer JW, Christianson M, Chiu CY, de Alaniz JR, Hawker CJ. ACS Macro Lett. 2014; 3: 580
  • 19 Majek M, Filace F, von Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
  • 20 Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
  • 21 Miyake GM, Theriot JC. Macromolecules 2014; 47: 8255
  • 22 Moad G, Rizzardo E, Thang SH. Polymer 2008; 49: 1079
  • 23 Xu J, Jung K, Atme A, Shanmugam S, Boyer C. J. Am. Chem. Soc. 2014; 136: 5508
  • 24 Fu C, Xu J, Tao L, Boyer C. ACS Macro Lett. 2014; 3: 633
  • 25 Xu J, Shanmugam S, Duong HT, Boyer C. Polym. Chem. 2015; 6: 5615
  • 26 Quinn J, Barner L, Barner-Kowollik C, Rizzardo E, Davis TP. Macromolecules 2002; 35: 7620
  • 27 Wang H, Li Q, Dai J, Du F, Zheng H, Bai R. Macromolecules 2013; 46: 2576
  • 28 Goto A, Ohtsuki A, Ohfuji H, Tanishima M, Kaji H. J. Am. Chem. Soc. 2013; 135: 13286
  • 29 Xu J, Shanmugam S, Boyer C. ACS Macro Lett. 2015; 4: 926
  • 30 Shanmugam S, Xu J, Boyer C. Chem. Sci. 2015; 6: 1341
  • 31 Zhou H, Johnson JA. Angew. Chem. Int. Ed. 2013; 52: 2235
  • 32 Chen M, MacLeod MJ, Johnson JA. ACS Macro Lett. 2015; 4: 566
  • 33 Goto A, Suzuki T, Ohfuji H, Tanishima M, Fukuda T, Tsujii Y, Kaji H. Macromolecules 2011; 44: 8709
  • 34 Lei L, Tanishima M, Goto A, Kaji H. Polymers 2014; 6: 860
  • 35 David G, Boyer C, Tonnar J, Ameduri B, Lacroix-Desmazes P, Boutevin B. Chem. Rev. 2006; 106: 3936
  • 36 Ohtsuki A, Goto A, Kaji H. Macromolecules 2013; 46: 96
  • 37 Ohtsuki A, Lei L, Tanishima M, Goto A, Kaji H. J. Am. Chem. Soc. 2015; 137: 5610
  • 38 Barker IA, Dove AP. Chem. Commun. 2013; 49: 1205
  • 39 Fu Q, McKenzie TG, Tan S, Nam E, Qiao GG. Polym. Chem. 2015; 6: 5362
  • 40 Mol JC. J. Mol. Catal. A: Chem. 2004; 213: 39
  • 41 Sutthasupa S, Shiotsuki M, Sanda F. Polym. J. 2010; 42: 905
  • 42 Ogawa KA, Goetz AE, Boydston AJ. J. Am. Chem. Soc. 2015; 137: 1400
  • 43 Goetz AE, Boydston AJ. J. Am. Chem. Soc. 2015; 137: 7572