Synlett 2016; 27(09): 1303-1309
DOI: 10.1055/s-0035-1561385
synpacts
© Georg Thieme Verlag Stuttgart · New York

The Development of Aza-Pinacol and Aza-Semipinacol Rearrangements for the Synthesis of Nitrogen-Containing Molecules

Yuanyuan Yu
a  School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. of China   Email: zuliansuo@biomed.tsinghua.edu.cn
,
Guang Li
a  School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. of China   Email: zuliansuo@biomed.tsinghua.edu.cn
,
Liansuo Zu*
a  School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. of China   Email: zuliansuo@biomed.tsinghua.edu.cn
b  Collaborative Innovation Center for Biotherapy, West China Medical School, Sichuan University, Chengdu, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 31 December 2015

Accepted after revision: 28 January 2016

Publication Date:
24 February 2016 (online)

Abstract

Although the widespread usage of aza-pinacol and aza-semipinacol rearrangements as synthetic methods has not been found, these synthetic transformations offer novel tactics for the preparation of nitrogen-containing heterocycles and natural alkaloids. Herein, we briefly discuss the most recent developments in this area and present our strategy based on aza-pinacol rearrangements for the synthesis of indolines and indolenines.

1 Introduction

2 Recently Developed Aza-Pinacol and Aza-Semipinacol Rearrangements

3 Indoline/Indolenine Synthesis Employing Aza-Pinacol Rearrangements as the Key Strategy

4 Conclusion

 
  • References


    • For selected reviews, see:
    • 1a Overman LE, Pennington LD. J. Org. Chem. 2003; 68: 7143
    • 1b Snape TJ. Chem. Soc. Rev. 2007; 36: 1823
    • 1c Overman LE. Tetrahedron 2009; 65: 6432
    • 1d Wang B, Tu Y. Acc. Chem. Res. 2011; 44: 1207
    • 1e Song Z, Fan C, Tu Y. Chem. Rev. 2011; 111: 7523
    • 1f Wang S, Li B, Tu Y. Chem. Commun. 2014; 50: 2393

      For most recent examples, see:
    • 2a Yu C, Huang W, Shi L, Chen M, Wu B, Zhou Y. J. Am. Chem. Soc. 2014; 136: 15837
    • 2b Romanov-Michailidis F, Pupier M, Besnard C, Burgi T, Alexakis A. Org. Lett. 2014; 16: 4988
    • 2c Kong C, Driver TG. Org. Lett. 2015; 17: 802
    • 2d Dhara K, Mandal T, Das J, Dash J. Angew. Chem. Int. Ed. 2015; 54: 15831
    • 2e Liao H, Chatupheeraphat A, Hsiao C, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 15540

    • For earlier examples, see:
    • 2f Kinugawa M, Nagamura S, Sakaguchi A, Masuda Y, Saito H, Ogasa T, Kasai M. Org. Process Rev. Dev. 1998; 2: 344
    • 2g Razavi H, Polt R. J. Org. Chem. 2000; 65: 5693
    • 2h Sugihara Y, Iimura S, Nakayama J. Chem. Commun. 2002; 134
  • 3 Yu Y, Li G, Jiang L, Zu L. Angew. Chem. Int. Ed. 2015; 54: 12627
  • 4 Jana N, Driver TG. Org. Biomol. Chem. 2015; 13: 9720
    • 5a Massiot G, Thepenier P, Jacquier MJ, Le Men-Olivier L, Delaude C. Heterocycles 1989; 29: 1435
    • 5b Ramirez A, Garcia-Rubio S. Curr. Med. Chem. 2003; 10: 1891
    • 5c Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS. J. Nat. Prod. 2007; 70: 1783
    • 5d Cai XH, Tan QG, Liu YP, Feng T, Du ZZ, Li WQ, Luo XD. Org. Lett. 2008; 10: 577
    • 5e Li L, Yang T, Liu Y, Liu J, Li M, Wang Y, Yang S, Zou Q, Li G. Org. Lett. 2012; 14: 3450
    • 5f Eckermann R, Gaich T. Synthesis 2013; 45: 2813
    • 5g Yang XW, Qin XJ, Zhao YL, Lunga PK, Li XN, Jiang SZ, Cheng GG, Liu YP, Luo XD. Tetrahedron Lett. 2014; 55: 4593
    • 6a Dounary AB, Overman LE, Wrobleski AD. J. Am. Chem. Soc. 2005; 127: 10186
    • 6b Dounary AB, Humphreys PG, Overman LE, Wrobleski AD. J. Am. Chem. Soc. 2008; 130: 5368
    • 6c Shen L, Zhang M, Wu Y, Qin Y. Angew. Chem. Int. Ed. 2008; 47: 3618
    • 6d Jones SB, Simmons B, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 13606
    • 6e Li G, Padwa A. Org. Lett. 2011; 13: 3767
    • 6f Liu P, Wang J, Zhang J, Qiu F. Org. Lett. 2011; 13: 6246
    • 6g Zu L, Boal BW, Garg NK. J. Am. Chem. Soc. 2011; 133: 8877
    • 6h Smith JM, Moreno J, Boal BW, Garg NK. J. Am. Chem. Soc. 2014; 136: 4504
    • 6i Ren W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2014; 53: 1818
    • 6j Teng M, Zi W, Ma D. Angew. Chem. Int. Ed. 2014; 53: 1814
    • 6k Zhang M, Huang X, Shen L, Qin Y. J. Am. Chem. Soc. 2009; 131: 6013
    • 6l Zi W, Xie W, Ma D. J. Am. Chem. Soc. 2012; 134: 9126
    • 6m Horning BD, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 6442
    • 6n Adams GL, Carroll PJ, Smith III AB. J. Am. Chem. Soc. 2013; 135: 519
    • 6o Adams GL, Carroll PJ, Smith AB. III. J. Am. Chem. Soc. 2012; 134: 4037
    • 6p Smith MW, Snyder SA. J. Am. Chem. Soc. 2013; 135: 12964

      For selected reviews of synthetic studies, see:
    • 7a Zhang D, Song H, Qin Y. Acc. Chem. Res. 2011; 44: 447
    • 7b Quasdorf KW, Overman LE. Nature (London, U.K.) 2014; 516: 181
    • 7c Smith JM, Moreno J, Boal BW, Garg NK. Angew. Chem. Int. Ed. 2015; 54: 400
    • 8a Liu Y, McWhorter WW. J. Am. Chem. Soc. 2003; 125: 4240
    • 8b Pearson WH, Lee III Y, Mi Y, Stoy P. J. Org. Chem. 2004; 69: 9109
    • 8c Sun W, Hong L, Wang R. Chem. Eur. J. 2011; 17: 6030
    • 8d Arai S, Nakajima M, Nishida A. Angew. Chem. Int. Ed. 2014; 53: 5569
    • 8e Guo C, Schedler M, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
    • 8f Yang Y, Bai Y, Sun S, Dai M. Org. Lett. 2014; 16: 6216