Synlett 2016; 27(08): 1274-1276
DOI: 10.1055/s-0035-1561407
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Si–B Bond Activation in the Nucleophilic Substitution of Primary Aliphatic Triflates

Jonas Scharfbier
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany   Email: martin.oestreich@tu-berlin.de
,
Martin Oestreich*
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany   Email: martin.oestreich@tu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 22 December 2015

Accepted after revision: 09 February 2016

Publication Date:
04 March 2016 (eFirst)

Abstract

A method for the nucleophilic displacement of the triflate leaving group attached to terminally functionalized alkyl groups with nucleophilic silicon is reported. Copper catalysis is used to release the silicon nucleophile from Suginome’s Si–B reagent. The functional group tolerance is excellent, and halide leaving groups do also work with the same protocol.

Supporting Information

 
  • References and Notes

  • 1 Oestreich M, Hartmann E, Mewald M. Chem. Rev. 2013; 113: 402
    • 2a Sawamura M, Ito H In Copper-Catalyzed Asymmetric Synthesis . Alexakis A, Krause N, Woodward S. Wiley-VCH; Weinheim: 2014
    • 2b Hensel A., Oestreich M.; Top. Organomet. Chem.; in press; doi: 10.1007/3418_2015_156.
  • 3 Hartmann E, Oestreich M. Chim. Oggi 2011; 29: 34
  • 4 Suginome M, Matsuda T, Ito Y. Organometallics 2000; 19: 4647
  • 5 Hartmann E, Vyas DJ, Oestreich M. Chem. Commun. 2011; 47: 7917
    • 6a Lee K.-S, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 2898
    • 6b Harb HY, Collins KD, Garcia Altur JV, Bowker S, Campbell L, Procter DJ. Org. Lett. 2010; 12: 5446
    • 6c Pace V, Rae JP, Harb HY, Procter DJ. Chem. Commun. 2013; 49: 5150
    • 6d Pace V, Rae JP, Procter DJ. Org. Lett. 2014; 16: 476
    • 6e Plotzitzka J, Kleeberg C. Organometallics 2014; 33: 6915
    • 7a Vercruysse S, Cornelissen L, Nahra F, Collard L, Riant O. Chem. Eur. J. 2014; 20: 1834
    • 7b Calderone JA, Santos WL. Angew. Chem. Int. Ed. 2014; 53: 4154
    • 7c Linstadt RT. H, Peterson CA, Lippincott DJ, Jette CI, Lipshutz BH. Angew. Chem. Int. Ed. 2014; 53: 4159
    • 7d Xu Y.-H, Wu L.-H, Wang J, Loh T.-P. Chem. Commun. 2014; 50: 7195
    • 8a Vyas DJ, Fröhlich R, Oestreich M. Org. Lett. 2011; 13: 2094
    • 8b Hensel A, Nagura K, Delvos LB, Oestreich M. Angew. Chem. Int. Ed. 2014; 53: 4964
    • 8c Mita T, Sugawara M, Saito K, Sato Y. Org. Lett. 2014; 16: 3028
    • 8d Zhao C, Jiang C, Wang J, Wu C, Zhang Q.-W, He W. Asian J. Org. Chem. 2014; 3: 851
    • 9a Kleeberg C, Feldmann E, Hartmann E, Vyas DJ, Oestreich M. Chem. Eur. J. 2011; 17: 13538
    • 9b Cirriez V, Rasson C, Hermant T, Petrignet J, Díaz Álvarez J, Robeyns K, Riant O. Angew. Chem. Int. Ed. 2013; 52: 1785
  • 10 Delvos LB, Oestreich M. Chim. Oggi 2013; 31: 74
    • 11a Vyas DJ, Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 8513
    • 11b Delvos LB, Vyas DJ, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 4650
    • 11c Hazra CK, Irran E, Oestreich M. Eur. J. Org. Chem. 2013; 4903
    • 11d Delvos LB, Hensel A, Oestreich M. Synthesis 2014; 46: 2957
    • 11e Delvos LB, Oestreich M. Synthesis 2015; 47: 924
  • 12 Takeda M, Shintani R, Hayashi T. J. Org. Chem. 2013; 78: 5007
  • 13 Cid J, Gulyás H, Carbó JJ, Fernández E. Chem. Soc. Rev. 2012; 41: 3558
    • 14a Yang C.-T, Zhang Z.-Q, Tajuddin H, Wu C.-C, Liang J, Liu J.-H, Fu Y, Czyzewska M, Steel PG, Marder T, Liu L. Angew. Chem. Int. Ed. 2012; 51: 528
    • 14b Ito H, Kubota K. Org. Lett. 2012; 14: 890
    • 14c Presset M, Fleury-Brégeot N, Oehlrich D, Rombouts F, Molander GA. J. Org. Chem. 2013; 78: 4615
    • 15a Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
    • 15b Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
  • 16 Dang H, Cox N, Lalic G. Angew. Chem. Int. Ed. 2014; 53: 752
    • 17a Kawachi A, Minamimoto T, Tamao K. Chem. Lett. 2001; 30: 1216
    • 17b Ito H, Horita Y, Yamamoto E. Chem. Commun. 2012; 48: 8006
    • 17c Kleeberg C, Borner C. Eur. J. Inorg. Chem. 2013; 2799
  • 18 Copper-Catalyzed Nucleophilic Substitution of Functionalized Alkyl Triflates; General Procedure A flame-dried Schlenk tube was charged with CuCN (1.1 mg, 5.0 mol%) and NaOt-Bu (36 mg, 1.5 equiv); when required, tetracosane was added as internal standard at this stage. THF was added (0.25 M), and the resulting solution was cooled to 0 °C. After 10 min, 1 (98 mg, 1.5 equiv) and the indicated triflate (0.25 mmol) were successively added. The purple solution was maintained at 0 °C or room temperature for the indicated time (monitoring by GLC analysis). The reaction was then diluted with MTBE (5 mL) and filtered through a short plug of silica gel, followed by rinsing with MTBE (2 × 5 mL). The solvents were evaporated under reduced pressure, and the crude material was purified by flash chromatography on silica gel with the indicated solvents as eluent (see the Supporting Information for details). The tetraorganosilanes were obtained as colorless oils.
  • 19 The current procedure was not applicable to secondary alkyl bromides, iodides, and triflates as a result of facile elimination. High and moderate conversion was obtained for bromides and iodides, respectively, but only traces of the desired tetraorganosilanes were detected by GLC analysis; triflates were generally too labile.