Synthesis 2016; 48(12): 1782-1802
DOI: 10.1055/s-0035-1561425
short review
© Georg Thieme Verlag Stuttgart · New York

Photochemical Electron and Hydrogen Transfer in Organic Synthesis: The Control of Selectivity

Norbert Hoffmann*
CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France   Email: norbert.hoffmann@univ-reims.fr
› Author Affiliations
Further Information

Publication History

Received: 29 January 2016

Accepted after revision: 03 March 2016

Publication Date:
15 April 2016 (online)


Abstract

Two mechanisms of hydrogen transfer are often observed in photochemical reactions. In a one-step procedure, the electron and the proton are simultaneously transferred (concerted process). In a two-step procedure, first an electron is transferred and the proton follows. Such steps are observed in photochemically induced radical reactions with α,β-unsaturated carbonyl and carboxyl compounds in which a radical species is added at either the α- or the β-position. Both mechanistic steps are also observed in photochemical reactions of imides. In Norrish­–Yang-type reactions, especially with aromatic carbonyl compounds, the spin multiplicity has an influence on the resulting cycloadditions. Such reactions are interesting tools for the synthesis of natural products and for diversity-oriented synthesis. Photochemically induced hydrogen transfer in photoredox catalytic reactions is discussed in connection with proton-coupled electron transfer.

1 Introduction

2 Two Mechanisms of Hydrogen Transfer in Competition

3 Further Reactions of Interest for Application to Synthetic Organic Chemistry

4 Photochemical Keto–Enol Tautomerization

5 Electron and Hydrogen Transfer in Photoredox Catalytic Reactions

6 Conclusion

 
  • References

    • 2a Turro NJ. Angew. Chem., Int. Ed. Engl. 1986; 25: 882
    • 2b Olivucci M, Santoro F. Angew. Chem. Int. Ed. 2008; 47: 6322
    • 2c Schapiro I, Melaccio F, Laricheva EN, Olivucci M. Photochem. Photobiol. Sci. 2011; 10: 867
    • 2d Zimmerman HE. Angew. Chem., Int. Ed. Engl. 1969; 8: 1
    • 3a Hoffmann N. Chem. Rev. 2008; 108: 1052
    • 3b Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 3c Ciana C.-L, Bochet CG. Chimia 2007; 61: 650
    • 5a Hoffmann N. ChemSusChem 2012; 5: 352
    • 5b Hoffmann N. ChemCatChem 2015; 7: 393
    • 6a Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
    • 6b Müller C, Bach T. Aust. J. Chem. 2008; 61: 557
    • 6c Svoboda J, König B. Chem. Rev. 2006; 106: 5413
    • 6d Vallavoju N, Sivaguru J. Chem. Soc. Rev. 2014; 43: 4084
    • 6e Yang C, Inoue Y. Chem. Soc. Rev. 2014; 43: 4123
    • 6f Wessig P. Angew. Chem. Int. Ed. 2006; 45: 2168
  • 7 Hari DP, König B. Chem. Commun. 2014; 50: 6688

    • For some spectacular examples, see:
    • 8a Zachos I, Gaßmeyer SK, Bauer D, Sieber V, Hollmann F, Kourist R. Chem. Commun. 2015; 51: 1918
    • 8b Churakova E, Kluge M, Ullrich R, Arends I, Hofrichter M, Hollmann F. Angew. Chem. Int. Ed. 2011; 50: 10716
    • 8c Perez DI, Grau MM, Arends IW. C. E, Hollmann F. Chem. Commun. 2009; 6848
    • 8d Hollmann F, Taglieber A, Schulz F, Reetz MT. Angew. Chem. Int. Ed. 2007; 46: 2903
    • 9a Inoue Y. Chem. Rev. 1992; 92: 741
    • 9b Chiral Photochemistry . Inoue Y, Ramamurthy V. Marcel Dekker; New York: 2004
    • 9c Griesbeck AG, Meierhenrich UJ. Angew. Chem. Int. Ed. 2002; 41: 3174
  • 10 Hopf H. Classics in Hydrocarbon Chemistry . Wiley-VCH; Weinheim: 2000
  • 11 Hoffmann N. Photochem. Photobiol. Sci. 2012; 11: 1613
    • 12a Albini A, Fagnoni M. Green Chem. 2004; 6: 1
    • 12b Oelgemöller M, Jung C, Mattay J. Pure Appl. Chem. 2007; 79: 1939
    • 12c Protti S, Dondi D, Fagnoni M, Albini A. Green Chem. 2009; 11: 239
    • 12d Oelgemöller M. J. Chin. Chem. Soc. 2014; 61: 743
    • 13a Gilmore K, Seeberger PH. Chem. Rec. 2014; 14: 410
    • 13b Oelgemöller M, Hoffmann N, Shvydkiv O. Aust. J. Chem. 2014; 67: 337
    • 13c Oelgemöller M. Chem. Eng. Technol. 2012; 35: 1144
    • 13d Oelgemöller M, Shvydkiv O. Molecules 2011; 16: 7522
    • 13e Coyle EE, Oelgemöller M. Photochem. Photobiol. Sci. 2008; 7: 1313
    • 13f Wirth T. Microreactors in Organic Chemistry . 2nd ed. Wiley-VCH; Weinheim: 2013
    • 13g Fukuyama T, Rahman MD, Sato M, Ryu I. Synlett 2008; 151
    • 13h Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem. Eur. J. 2014; 20: 15226
    • 13i Oelgemöller M, Hoffmann N. Pure Appl. Chem. 2015; 87: 569
    • 14a Sezen B, Sames D In Handbook of C–H Transformations . Vol. 1. Dyker G. Wiley-VCH; Weinheim: 2005: 3
    • 14b Special Issue: Activation of Unreactive Bonds for Organic Synthesis, Adv. Synth. Catal. 2003; 345: 1033
    • 14c Special Issue: Selective Functionalization of C–H Bonds Chem. Rev. 2010; 110: 575
    • 14d Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 14e Yamaguchi J, Yamaguchi AD. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 14f White MC. Synlett 2012; 23: 2746
    • 14g Dalal A, Khanna R, Kumar D, Jindal P, Chaudhary A, Kamboy CR. Curr. Org. Chem. 2015; 19: 2156
  • 15 Hoffmann N. J. Phys. Org. Chem. 2015; 28: 121
  • 16 For a very instructive example, see: Miyazaki M, Ohara R, Daigoku K, Hashimoto K, Woodward JR, Dedonder C, Jouvet C, Fujii M. Angew. Chem. Int. Ed. 2015; 54: 15089
  • 17 Yoon UC, Mariano PS. Acc. Chem. Res. 1992; 25: 233
    • 18a Xu W, Jeon YT, Hasegawa E, Yoon UC, Mariano PS. J. Am. Chem. Soc. 1989; 111: 406
    • 18b Xu W, Zhang X.-M, Mariano PS. J. Am. Chem. Soc. 1991; 113: 8863
    • 19a Fuji K. Chem. Rev. 1993; 93: 2037
    • 19b Christoffers J, Mann A. Angew. Chem. Int. Ed. 2001; 40: 4591
    • 19c Christoffers J, Baro A. Adv. Synth. Catal. 2005; 347: 1473
    • 19d Quaternary Stereocenters . Christoffers J, Baro A. Wiley-VCH; Weinheim: 2005
  • 20 Hoffmann N, Bertrand S, Marinković S, Pesch J. Pure Appl. Chem. 2006; 78: 2227
  • 21 Griesbeck AG, Hoffmann N, Warzecha KD. Acc. Chem. Res. 2007; 40: 128
    • 22a Fischer H, Radom L. Angew. Chem. Int. Ed. 2001; 40: 1340
    • 22b Poutsma ML. J. Phys. Org. Chem. 2008; 21: 758
    • 23a Bertrand S, Hoffmann N, Pete J.-P, Bulach V. Chem. Commun. 1999; 2291
    • 23b Bertrand S, Hoffmann N, Humbel S, Pete JP. J. Org. Chem. 2000; 65: 8690
  • 24 Marinković S, Brulé C, Hoffmann N, Prost E, Nuzillard J.-M, Bulach V. J. Org. Chem. 2004; 69: 1646
  • 25 Marinković S, Hoffmann N. Eur. J. Org Chem. 2004; 3102
    • 26a Manley DW, McBurney RT, Miller P, Howe RF, Rhydderch S, Walton JC. J. Am. Chem. Soc. 2012; 134: 13580
    • 26b Manley DW, McBurney RT, Miller P, Walton JC, Mills A, O’Rourke C. J. Org. Chem. 2014; 79: 1386
    • 26c See also: Zhang X.-M, Mariano P. J. Org. Chem. 1991; 56: 1655
  • 27 Hoffmann N. Aust. J. Chem. 2015; 68: 1621
    • 28a Bertrand S, Hoffmann N, Pete J.-P. Eur. J. Org. Chem. 2000; 2227
    • 28b Harakat D, Pesch J, Marinković S, Hoffmann N. Org. Biomol. Chem. 2006; 4: 1202
    • 28c Gassama A, Ernenwein C, Hoffmann N. ChemSusChem 2009; 2: 1130
  • 29 Bauer A, Westkämper F, Grimme S, Bach T. Nature 2005; 436: 1139
    • 30a Marinković S, Hoffmann N. Chem. Commun. 2001; 1576
    • 30b Marinković S, Hoffmann N. Int. J. Photoenergy 2003; 5: 175
  • 31 Tang J, Grampp G, Liu Y, Wang B.-X, Tao F.-F, Wang L.-J, Liang X.-Z, Xiao H.-Q, Shen Y.-M. J. Org. Chem. 2015; 80: 2724

    • For some selected reviews, see:
    • 32a Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 32b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 32c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 32d Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
    • 32e Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 32f Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 857
    • 32g Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 32h Peña-Lopez M, Rosas-Hernandez A, Beller M. Angew. Chem. Int. Ed. 2015; 54: 5006
    • 32i Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 32j Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 32k Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 32l Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 32m Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 32n Protti S, Fagnoni M, Ravelli D. ChemCatChem 2015; 7: 1516
    • 32o Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 32p Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
    • 32q Ravelli D, Protti S, Fagnoni M, Albini A. Curr. Org. Chem. 2013; 17: 2366
    • 32r See also ref. 6f.

      For recent examples of similar reactions with amines, see:
    • 33a Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
    • 33b Rueping M, Zoller J, Fabry DC, Poscharny K, Koenigs RM, Weirich TE, Mayer J. Chem. Eur. J. 2012; 18: 3478
    • 33c Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M. J. Am. Chem. Soc. 2013; 135: 1823
    • 33d Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
    • 33e Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem. Commun. 2012; 48: 6966
    • 33f Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
    • 33g Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2014; 20: 6120
    • 33h McNally A, Prier CP, MacMillan DW. C. Science 2011; 334: 1114
    • 33i Dai X, Cheng D, Guan B, Mao W, Xu X, Li X. J. Org. Chem. 2014; 79: 7212
    • 33j Pandey G, Jadhav D, Tiwari SK, Singh B. Adv. Synth. Catal. 2014; 356: 2813
  • 34 Jahjah R, Gassama A, Bulach V, Suzuki C, Abe M, Hoffmann N, Martinez A, Nuzillard J.-M. Chem. Eur. J. 2010; 16: 3341
  • 35 Lejeune G, Font J, Parella T, Alibés R, Figueredo M. J. Org. Chem. 2015; 80: 9437
  • 36 Ginzel K.-D, Steckhan E, Degner D. Tetrahedron 1987; 43: 5797
  • 37 Mella M, Fagnoni M, Freccero M, Fasani E, Albini A. Chem. Soc. Rev. 1998; 27: 81
  • 38 Aurrecoechea JM, Suero R, de Torres E. J. Org. Chem. 2006; 71: 8767
    • 39a Jonas M, Blechert S, Steckhan E. J. Org. Chem. 2001; 66: 6896
    • 39b Pandey G, Kapur M. Org. Lett. 2002; 4: 3883
    • 39c Pandey G, Reddy GD, Kumaraswamy G. Tetrahedron 1994; 50: 8185
    • 40a Alibés R, Bourdelande JL, Font J, Grégori A, Parella T. Tetrahedron 1996; 52: 1367
    • 40b de March P, Figueredo M, Font J, Raya J, Alvarez-Larena A, Piniella JF. J. Org. Chem. 2003; 68: 2437

      For some examples, see:
    • 41a Benko Z, Fraser-Reid B, Mariano PS, Beckwith AL. J. J. Org. Chem. 1988; 53: 2066
    • 41b Mann J, Weymouth-Wilson A. Synlett 1992; 67
    • 41c Hoffmann N. Tetrahedron: Asymmetry 1994; 5: 879
    • 41d Brulé C, Hoffmann N. Tetrahedron Lett. 2002; 43: 69
    • 41e Yavorskyy A, Shvydkiv O, Nolan K, Hoffmann N, Oelgemöller M. Tetrahedron Lett. 2011; 52: 278
    • 41f Yavorskyy A, Shvydkiv O, Hoffmann N, Nolan K, Oelgemöller M. Org. Lett. 2012; 14: 4342
  • 42 Graalfs H, Fröhlich R, Wolff C, Mattay J. Eur. J. Org. Chem. 1999; 1057
    • 43a Basavaiah D, Rao AJ, Satyanarayana T. Chem. Rev. 2003; 103: 811
    • 43b Wei Y, Shi M. Chem. Rev. 2013; 113: 6659
    • 43c Candish L, Nakano Y, Lupton DW. Synthesis 2014; 46: 1823
    • 43d Xie P, Huang Y. Org. Biomol. Chem. 2015; 13: 8578
    • 44a Kobayashi T, Kurono M, Sato H, Nakanishi K. J. Am. Chem. Soc. 1972; 94: 2863
    • 44b Barton DH. R, Magnus PD, Okogun JI. J. Chem. Soc., Perkin Trans. 1 1972; 1103
    • 44c Nobs F, Burger U, Schaffner K. Helv. Chim. Acta 1977; 60: 1607
  • 45 Paquette LA, Pansegrau PD, Wiedeman PE, Springer JP. J. Org. Chem. 1988; 53: 1461
  • 46 Le Blanc S, Pete J.-P, Piva O. Tetrahedron Lett. 1992; 33: 1993
  • 47 Breslow R. Acc. Chem. Res. 1980; 13: 170
  • 48 Wagner PJ In Synthetic Organic Photochemistry . Griesbeck AG, Mattay J. Marcel Dekker; New York: 2005: 11
  • 49 Wessig P, Mühling O In Synthetic Organic Photochemistry . Griesbeck AG, Mattay J. Marcel Dekker; New York: 2005: 41
  • 50 Wagner PJ In CRC Handbook of Organic Photochemistry and Photobiology . 2nd ed., Vol. 1; Horspool W, Lenci F. CRC Press; Boca Raton: 2004: 58
  • 51 Herrera A, Rondón M, Suárez E. J. Org. Chem. 2008; 73: 3384
  • 52 Álvarez-Dorta D, León EI, Kennedy AR, Riesco-Fagundo C, Suárez E. Angew. Chem. Int. Ed. 2008; 47: 8917
  • 53 Bach T, Aechtner T, Neumüller B. Chem. Eur. J. 2002; 8: 2464
  • 54 Wagner PJ. Acc. Chem. Res. 1989; 22: 83
  • 55 Ternansky RJ, Balogh DW, Paquette LA. J. Am. Chem. Soc. 1982; 104: 4503
  • 56 Kraus GA, Thomas PJ, Schwinden MD. Tetrahedron Lett. 1990; 31: 1819
  • 57 Büchi G, Francisco MA, Liesch JM, Schuda PF. J. Am. Chem. Soc. 1981; 103: 3497

    • For some further examples, see:
    • 58a Wagner PJ, Meador MA, Park B.-S. J. Am. Chem. Soc. 1990; 112: 5199
    • 58b Cottet F, Cottier L, Descotes G. Can. J. Chem. 1990; 68: 1251
    • 58c Horaguchi T, Tsukada C, Hasegawa E, Shimizu T, Suzuki T, Tanemura K. J. Heterocycl. Chem. 1991; 28: 1261
    • 58d Sharshira EM, Horaguchi T. J. Heterocycl. Chem. 1997; 34: 1837
    • 59a Cottier L, Descotes G. Tetrahedron 1985; 41 409
    • 59b Bron P, Cottier L, Descotes G. J. Heterocycl. Chem. 1984; 21: 21
    • 59c Bernasconi C, Cottier L, Descotes G, Praly J.-P, Remy G, Grenier-Loustalot M.-F, Metras F. Carbohydr. Res. 1983; 115: 105
    • 59d Cottier L, Descotes G, Grenier M.-F, Metras F. Tetrahedron 1981; 37: 2515
    • 59e Remy G, Cottier L, Descotes G. Can. J. Chem. 1980; 58: 2660
    • 59f Remy G, Cottier L, Descotes G. J. Carbohydr. Chem. 1982; 1: 37
  • 60 Koźluk T, Cottier L, Descotes G. Tetrahedron 1981; 37: 1875
  • 61 Francke W, Hindorf G, Reith W. Angew. Chem. Int. Ed. 1978; 17: 862
    • 62a Kanaoka Y. Acc. Chem. Res. 1978; 11: 407
    • 62b Yoon UC, Mariano PS. Acc. Chem. Res. 2001; 34: 523
    • 62c Oelgemöller M, Griesbeck AG. J. Photochem. Photobiol. C 2002; 3: 109
    • 62d Horvat M, Mlinarić-Majerski K, Basarić N. Croat. Chem. Acta 2010; 83: 179
    • 62e Cho DW, Yoon UC, Mariano PS. Acc. Chem. Res. 2011; 44: 204

      For selected examples, see:
    • 63a Griesbeck AG, Heinrich T, Oelgemöller M, Molis A, Heidtmann A. Helv. Chim. Acta 2002; 85: 4561
    • 63b Griesbeck AG, Oelgemöller M, Lex J, Haeuseler A, Schmittel M. Eur. J. Org. Chem. 2001; 1831
    • 63c Yoon UC, Oh SW, Lee JH, Park JH, Kang KT, Mariano PS. J. Org. Chem. 2001; 66: 939
    • 63d Machida M, Takechi H, Kanaoka Y. Chem. Pharm. Bull. 1982; 30: 1579
    • 64a Griesbeck AG, Mauder H, Müller I, Peters E.-M, Peters K, von Schnering HG. Tetrahedron Lett. 1993; 34: 453
    • 64b Görner H, Griesbeck AG, Heinrich T, Kramer W, Oelgemöller M. Chem. Eur. J. 2001; 7: 1530
  • 65 Wada M, Nakai H, Aoe K, Kotera K, Sato Y, Hatanaka Y, Kanaoka Y. Tetrahedron 1983; 39: 1273
  • 66 Sato Y, Nakai H, Wada M, Mizoguchi T, Hatanaka Y, Kanaoka Y. Chem. Pharm. Bull. 1992; 40: 3174
    • 67a Wada M, Nakai H, Sato Y, Hatanaka Y, Knaoka Y. Tetrahedron 1983; 39: 2691
    • 67b Wada M, Nakai H, Sato Y, Knaoka Y. Chem. Pharm. Bull. 1982; 30: 3414
  • 68 Coyle JD, Bryant LR. B, Cragg JE, Challiner JF, Haws EJ. J. Chem. Soc., Perkin Trans. 1 1985; 1177
    • 69a Coyle JD, Newport GL. J. Chem. Soc., Perkin Trans. 1 1980; 93
    • 69b Coyle JD, Challiner JF, Haws EJ, Newport GL. J. Heterocycl. Chem. 1980; 17: 1131
    • 70a Valverde E, Seira C, McBride A, Binnie M, Luque FJ, Webster SP, Bidon-Chanal A, Vázquez S. Bioorg. Med. Chem. 2015; 23: 7607
    • 70b Stockdale TP, Williams CM. Chem. Soc. Rev. 2015; 44: 7737
    • 70c Lamoureux G, Artavia G. Curr. Med. Chem. 2010; 17: 2967
    • 70d Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
    • 70e Shokova EA, Kovalev VV. Pharm. Chem. J. 2013; 47: 264
  • 71 Zhou Y, Brittain AD, Kong D, Xiao M, Meng Y, Sun L. J. Mater. Chem. C 2015; 3: 6947
  • 72 Horvat M, Görner H, Warzecha K.-D, Neudörfl J, Griesbeck AG, Mlinarić-Majerski K, Basarić N. J. Org. Chem. 2009; 74: 8219
  • 73 Mella M, Freccero M, Soldi T, Fasani E, Albini A. J. Org. Chem. 1996; 61: 1413
  • 74 Basarić N, Horvat M, Mlinarić-Majerski K, Zimmermann E, Neudörfl J, Griesbeck AG. Org. Lett. 2008; 10: 3965
    • 75a Cindro N, Horvat M, Mlinarić-Majerski K, Griesbeck AG, Basarić N. Beilstein J. Org. Chem. 2011; 7: 270
    • 75b Cindro N, Halasz I, Mlinarić-Majerski K, Basarić N. Eur. J. Org. Chem. 2013; 929
  • 76 Oelgemöller M, Kramer WH. J. Photochem. Photobiol. C 2010; 11: 210
  • 77 McDermott G, Yoo DJ, Oelgemöller M. Heterocycles 2005; 65: 2221
    • 78a Kanaoka Y, Hatanaka Y. J. Org. Chem. 1976; 41: 400
    • 78b Maruyama K, Kubo Y. J. Org. Chem. 1977; 42: 3215
    • 78c Bryant LR. B, Coyle JD. Tetrahedron Lett. 1983; 24: 1841
  • 79 Thiering S, Sund C, Thiem J, Giesler A, Kopf J. Carbohydr. Res. 2001; 336: 271
    • 80a Sowa CE, Thiem J. Angew. Chem., Int. Ed. Engl. 1994; 33: 1979
    • 80b Sowa CE, Kopf J, Thiem J. J. Chem. Soc., Chem. Commun. 1995; 211
    • 82a Segura JL, Martín N. Chem. Rev. 1999; 99: 3199
    • 82b Nemoto H, Fukumoto K. Tetrahedron 1998; 54: 5425
    • 82c Charlton JL, Alauddin MM. Tetrahedron 1987; 43: 2873
    • 83a Nerdel F, Brodowski W. Chem. Ber. 1968; 101: 1398
    • 83b Pfau M, Combrisson S, Rowe Jr JE, Heindel ND. Tetrahedron 1978; 34: 3459
    • 83c Wilson RM, Hannemann K, Heineman WR, Kirchhoff JR. J. Am. Chem. Soc. 1987; 109: 4743
  • 84 Ilhan F, Tyson DS, Stasko DJ, Kirschbaum K, Meador MA. J. Am. Chem. Soc. 2006; 128: 702
  • 85 Ilhan F, Tyson DS, Meador MA. Org. Lett. 2006; 8: 577
    • 86a Tyson DS, Carbaugh AD, Ilhan F, Santos-Pérez J, Meador MA. Chem. Mater. 2008; 20: 6595
    • 86b Ilhan F, Tyson DS, Meador MA. Chem. Mater. 2004; 16: 2978
  • 87 Nicolaou KC, Gray DL. F, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3679
    • 88a Nicolaou KC, Gray DL. F, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3675
    • 88b Prabhakar S, Lobo AM, Tavares MR, Oliveira MC. J. Chem. Soc., Perkin Trans. 1 1981; 1273
    • 88c Kraus GA, Wu Y. J. Org. Chem. 1992; 57: 2922
  • 89 Grosch B, Orlebar CN, Herdtweck E, Massa W, Bach T. Angew. Chem. Int. Ed. 2003; 42: 3693
  • 90 Nicolaou KC, Gray DL. F, Tae J. J. Am. Chem. Soc. 2004; 126: 613
  • 91 Clive DL. J, Wang J. Org. Prep. Proced. Int. 2005; 37: 1
  • 92 Mukhina OA, Kumar NN. B, Arisco TM, Valiulin RA, Metzel GA, Kutateladze AG. Angew. Chem. Int. Ed. 2011; 50: 9428
  • 93 Mukhina OA, Cronk WC, Kumar NN. B, Sekhar MC, Samanta A, Kutateladze AG. J. Phys. Chem. A 2014; 118: 10487
  • 94 Umstead WJ, Mukhina OA, Kutateladze AG. Eur. J. Org. Chem. 2015; 2205
  • 95 Kumar NN. B, Mukhina OA, Kutateladze AG. J. Am. Chem. Soc. 2013; 135: 9608
  • 96 Mukhina OA, Kuznetsov DM, Cowger TM, Kutateladze AG. Angew. Chem. Int. Ed. 2015; 54: 11516
  • 97 Piva O In CRC Handbook of Organic Photochemistry and Photobiology . 2nd ed., Vol. 1 Horspool W., Lenci F., CRC Press; Boca Raton: 2004: 70
  • 98 Piva O. J. Org. Chem. 1995; 60: 7879
    • 99a Raffier L, Piva O. Beilstein J. Org. Chem. 2011; 7: 151
    • 99b Baragiggia F, Piva O. Tetrahedron: Asymmetry 2001; 12: 1389
    • 99c Faure S, Connolly JD, Fakunle CO, Piva O. Tetrahedron 2000; 56: 9647
    • 99d Piva O, Pete J.-P. Tetrahedron: Asymmetry 1992; 3: 759
    • 99e Comesse S, Piva O. Tetrahedron: Asymmetry 1999; 10: 1061
    • 99f Faure S, Piva O. Synlett 1998; 1414
    • 99g Mortezaei R, Awandi D, Henin F, Muzart J, Pete J.-P. J. Am. Chem. Soc. 1988; 110: 4824
    • 99h Awandi D, Henin F, Muzart J, Pete J.-P. Tetrahedron: Asymmetry 1991; 2: 1101
  • 100 Baragiggia F, Dos Santos S, Piva O. Synthesis 2002; 427
    • 101a Piva O, Mortezaei R, Henin F, Muzart J, Pete J.-P. J. Am. Chem. Soc. 1990; 112: 9263
    • 101b Hénin F, Létinois T, Muzart J. Tetrahedron: Asymmetry 2000; 11: 2037
    • 101c Henin F, Mortezaei R, Muzart J, Pete J.-P, Piva O. Tetrahedron 1989; 45: 6196
    • 101d Henin F, Muzart J, Pete J.-P, Piva O. New J. Chem. 1991; 15: 611

      For some selected reviews on photoredox catalytic reactions with UV light, see:
    • 102a Julliard M, Chanon M. Chem. Rev. 1983; 83: 425
    • 102b Fox MA. Adv. Photochem. 1986; 13: 237
    • 102c Mattay J. Angew. Chem. Int. Ed. 1987; 26: 825
    • 102d Mattay J. Synthesis 1989; 233
    • 102e Pandey G. Synlett 1992; 546
    • 102f Pandey G. Top. Curr. Chem. 1993; 168: 175
    • 102g Homogeneous Photocatalysis . Chanon M. Wiley; Chichester: 1997
    • 102h Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 102i Hoffmann N. J. Photochem. Photobiol. C 2008; 9: 43
    • 102j Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 102k See also ref. 32o.
  • 103 Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
    • 104a Asmus K.-D. Acc. Chem. Res. 1979; 12: 436
    • 104b Steffen LK, Glass RS, Sabahi M, Wilson GS, Schöneich C, Mahling S, Asmus K.-D. J. Am. Chem. Soc. 1991; 113: 2141
    • 104c Miller BL, Kuczera K, Schöneich C. J. Am. Chem. Soc. 1998; 120: 3345
    • 104d Goez M, Rozwadowski J, Marciniak B. Angew. Chem. Int. Ed. 1998; 37: 628
    • 104e Braïda B, Hazebroucq S, Hiberty P. J. Am. Chem. Soc. 2002; 124: 2371
    • 104f Maity DK. J. Phys. Chem. A 2002; 106: 5716
    • 105a Humbel S, Côte I, Hoffmann N, Bouquant J. J. Am. Chem. Soc. 1999; 121: 5507
    • 105b Humbel S, Hoffmann N, Côte I, Bouquant J. Chem. Eur. J. 2000; 6: 1592
  • 106 Hasegawa E, Seida T, Chiba N, Takahashi T, Ikeda H. J. Org. Chem. 2005; 70: 9632
  • 107 Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
  • 108 Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
    • 109a Koper MT. M. Chem. Sci. 2013; 4: 2710
    • 109b Bonin J, Costentin C, Robert M, Savéant J.-M, Tard C. Acc. Chem. Res. 2012; 45: 372
    • 109c Li C, Danovich D, Shaik S. Chem. Sci. 2012; 3: 1903
    • 109d Mayer JM, Rhile IJ, Larsen FB, Mader EA, Markle TF, DiPasquale AG. Photosynth. Res. 2006; 87: 3
    • 109e Stubbe J, Nocera DG, Yee CS, Chang MC. Y. Chem. Rev. 2003; 103: 2167
    • 109f Migliore A, Polizzi NF, Therien MJ, Beratan DN. Chem. Rev. 2014; 114: 3381
    • 109g Layfield JP, Hammes-Schiffer S. Chem. Rev. 2014; 114: 3466
    • 109h Bonin J, Robert M. Photochem. Photobiol. 2011; 87: 1190
  • 110 Special Issue: Proton-Coupled Electron Transfer; Chem. Rev. 2010, 110, 6937.
  • 111 Huynh M.-HV, Meyer TJ. Chem. Rev. 2007; 107: 5004
    • 112a Saouma CT, Mayer JM. Chem. Sci. 2014; 5: 21
    • 112b Hodgkiss JM, Rosenthal J, Nocera DG In Hydrogen-Transfer Reactions . Vol. 1–4. Hynes JT, Klinman JP, Limbach H.-H, Schowen RL. Wiley-VCH; Weinheim: 2007: 503