Synlett 2016; 27(06): 876-879
DOI: 10.1055/s-0035-1561501
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of (–)-Pentazocine and (–)-Metazocine

Lin Hu
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100083, P. R. of China   Email: zdszlh@bjmu.edu.cn
,
Lihe Zhang*
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100083, P. R. of China   Email: zdszlh@bjmu.edu.cn
,
Hongbin Zhai*
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100083, P. R. of China   Email: zdszlh@bjmu.edu.cn
b   Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology Department, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. of China   Email: zhaihb@pkusz.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 22 October 2015

Acccepted after revision: 22 November 2015

Publication Date:
05 January 2016 (online)


Abstract

We have accomplished an efficient asymmetric synthesis of (–)-pentazocine and (–)-metazocine from the readily available d-tyrosine, featuring a ring-closing metathesis (RCM) reaction for the formation of the C ring and an intramolecular Friedel–Crafts reaction for the assembly of the B ring. The new strategy established herein should be applicable to enantioselective synthesis of a broad range of chiral benzomorphan analogues, thereby facilitating the biological and medicinal chemistry studies of these clinically important molecules.

Supporting Information

 
  • References and Notes

    • 1a Novak BH, Hudlicky T, Reed JW, Mulzer J, Trauner D. Curr. Org. Chem. 2000; 4: 343
    • 1b Hudlicky T, Butora G, Fearnley PS, Gum AG, Stabile MR. Stud. Nat. Prod. Chem. 1996; 18: 43
    • 1c Blakemore PR, White JD. Chem. Commun. 2002; 1159
    • 2a Eddy NB, May EL. Synthetic Analgesics, Part B . Pergamon Press; Oxford, London: 1966
    • 2b Palmer DC, Strauss MJ. Chem. Rev. 1977; 77: 1
    • 2c Lednicer D. Strategies for Organic Drug Synthesis and Design . John Wiley and Sons; New York: 1998: 161-184
    • 3a Clarke EG. C. Nature (London, U.K.) 1959; 184: 451
    • 3b Archer S, Albertson FN, Harris LS, Pierson AK, Bird JG. J. Med. Chem. 1964; 7: 123
    • 3c Kametani T, Kigasawa K, Hiiragi M, Wagatsuma N. Heterocycles 1974; 2: 79
    • 3d Tullar BF, Harris LS, Perry RL, Pierson AK, Soria AE, Wetterau WF, Albertson NF. J. Med. Chem. 1967; 10: 383
    • 4a Boulanger WA. Synth. Commun. 1999; 29: 2201
    • 4b Brine GA, Berrang B, Hayes JP, Carroll FI. J. Heterocycl. Chem. 1990; 27: 2139
    • 4c Rice KC, Jacobson AE. J. Med. Chem. 1976; 19: 430
    • 5a Comins DL, Zhang Y.-M, Joseph SP. Org. Lett. 1999; 1: 657
    • 5b Genisson Y, Marazano C, Das BC. J. Org. Chem. 1993; 58: 2052
    • 5c Meyers AI, Dickman DA, Bailey TR. J. Am. Chem. Soc. 1985; 107: 7974
    • 5d Chen Q, Huo X, Zhang H, She X. Synlett 2012; 23: 1349
    • 5e Chen Q, Huo X, Zhang H, She X. Chem. Asian J. 2012; 7: 2543
  • 6 Trost BM, Tang W. J. Am. Chem. Soc. 2003; 125: 8744
  • 7 Coppola GM, Schuster HF. Asymmetric Synthesis – Construction of Chiral Molecules Using Amino Acids. John Wiley and Sons; New York: 1987
  • 8 Yang X, Zhai H, Li Z. Org. Lett. 2008; 10: 2457
    • 10a Grubbs RH, Miller SJ, Fu GC. Acc. Chem. Res. 1995; 28: 446
    • 10b Prunet J. Angew. Chem. Int. Ed. 2003; 42: 2826
    • 10c Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
    • 11a Jafarpour L, Nolan SP. Org. Lett. 2000; 2: 4075
    • 11b Louie J, Grubbs RH. Angew. Chem. Int. Ed. 2001; 40: 247
    • 11c Fürstner A, Ackermann L, Beck K, Hori H, Koch D, Langemann K, Liebl M, Six C, Leitner W. J. Am. Chem. Soc. 2001; 123: 9000
    • 11d Andreana PR, McLellan JS, Chen Y, Wang PG. Org. Lett. 2002; 4: 3875
    • 11e Yao Q, Zhang Y. J. Am. Chem. Soc. 2004; 126: 74
    • 11f Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K. J. Am. Chem. Soc. 2004; 126: 9318
    • 11g Berlin JM, Campbell K, Ritter T, Funk WT, Chlenov A, Grubbs RH. Org. Lett. 2007; 9: 1339
    • 11h Stewart LC, Ung T, Pletnev AA, Berlin JM, Grubbs RH, Schrodi Y. Org. Lett. 2007; 9: 1589
    • 11i Yoshida K, Kawagoe F, Iwadate N, Takahashi H, Imamoto T. Chem. Asian J. 2006; 1: 611
    • 11j Vorfalt T, Leuthaeusser S, Plenio H. Angew. Chem. Int. Ed. 2009; 48: 5191
    • 11k Anada M, Tanaka M, Washio T, Yamawaki M, Abe T, Hashimoto S. Org. Lett. 2007; 9: 4559
    • 11l Stenne B, Timperio J, Savoie J, Dudding T, Collins SK. Org. Lett. 2010; 12: 2030
    • 11m Heppekausen J, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 7829
    • 12a Chandrasekhar S, Chandrashekar G. Tetrahedron: Asymmetry 2005; 16: 2209
    • 12b Yonezawa Y, Shimizu K, Yoon K, Shin C. Synthesis 2000; 634
  • 13 The ratio was deduced by 1H NMR analysis.
  • 14 Neipp CE, Martin SF. J. Org. Chem. 2003; 68: 8867
  • 15 Kametani T, Kigasawa K, Hüragi M, Hayasaka T, Wagatsuma N, Wakisaka K. J. Heterocycl. Chem. 1969; 6: 43
  • 16 Ji S, Gortler LB, Waringlo A, Battisti A, Bank S, Closson WD. J. Am. Chem. Soc. 1967; 89: 5311
  • 17 Synthesis of 3 To a solution of 13 (31.0 mg, 0.101 mmol) in EtOAc (1 mL), EtOH (1 mL), and 2.5 N HCl (0.25 mL) was added 10% Pd/C (10.7 mg, 10.1 μmol). The mixture was stirred under H2 (1 atm) overnight (16 h) and filtered. The filtrate was concentrated to give a crude secondary amine as slurry, which was used for the next step without purification. The above crude secondary amine was dissolved in DMF (1.5 mL). NaHCO3 (67.9 mg, 0.808 mmol) and prenyl bromide (30.1 mg, 0.202 mmol) were successively added. The mixture was stirred at r.t. for 2 h, diluted with H2O (3 mL), and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated to give a residue, which was chromatographed (MeOH–CH2Cl2, 1:10) to afford (–)-pentazocine (22.0 mg, 76%) as a white solid: [α]D 20 = –135.3 (c 0.44, CHCl3). IR (film): ν = 3287, 2965, 2919, 2574, 1740, 1673, 1610, 1581, 1498, 1459, 1376, 1259, 1236, 1066, 933, 849, 807, 757 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.84 (d, J = 7.2 Hz, 3 H), 1.20–1.39 (m, 1 H), 1.31 (s, 3 H), 1.66 (s, 3 H), 1.71 (s, 3 H), 1.90 (dt, J = 12.8, 4.0 Hz, 1 H), 1.95–2.06 (m, 1 H), 2.15 (dt, J = 12.4, 2.4 Hz, 1 H), 2.59–2.71 (m, 1 H), 2.71 (dd, J = 18.8, 6.4 Hz, 1 H), 2.93 (d, J = 18.4 Hz, 1 H), 3.04–3.13 (m, 1 H), 3.22 (d, J = 6.4 Hz, 2 H), 5.27–5.38 (m, 1 H), 6.63 (dd, J = 8.0, 2.4 Hz, 1 H), 6.71 (d, J = 2.4 Hz, 1 H), 6.94 (d, J = 8.4 Hz, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 14.0, 18.1, 23.3, 25.2, 26.0, 36.2, 40.7, 41.2, 45.6, 52.2, 57.1, 112.5, 113.4, 120.1, 127.0, 128.1, 136.2, 142.8, 154.9. ESI-MS: m/z = 286.1 [M + H], 308.1 [M + Na]. HRMS (MALDI): m/z calcd for C19H27NO + H: 286.2165; found: 286.2170.
  • 18 Gottlieb L, Meyers AI. J. Org. Chem. 1990; 55: 5659