Synlett 2016; 27(08): 1241-1244
DOI: 10.1055/s-0035-1561559
letter
© Georg Thieme Verlag Stuttgart · New York

Indium(III) Chloride Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles from Oximes and Sodium Azide

Sravanthi Devi Guggilapu
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India   Email: bathini.niperhyd@gov.in
,
Santosh Kumar Prajapti
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India   Email: bathini.niperhyd@gov.in
,
Atulya Nagarsenkar
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India   Email: bathini.niperhyd@gov.in
,
Keshav Kumar Gupta
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India   Email: bathini.niperhyd@gov.in
,
Bathini Nagendra Babu*
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India   Email: bathini.niperhyd@gov.in
› Author Affiliations
Further Information

Publication History

Received: 24 November 2015

Accepted after revision: 30 December 2015

Publication Date:
27 January 2016 (online)


Authors contributed equally.

Abstract

A simple and efficient protocol has been developed for the synthesis of 5-substituted 1H-tetrazole derivatives in good to excellent yields from various oximes and sodium azide by using indium(III) chloride as a Lewis acid catalyst. The present method has significant advantages, such as an inexpensive catalyst, low catalyst loading, mild reaction conditions, and simple experimental procedures.

 
  • References and Notes

  • 1 Singh H, Chawla AS, Kapoor VK, Paul D, Malhotra RK. Prog. Med. Chem. 1980; 17: 151
  • 2 Butler RN. Comprehensive Heterocyclic Chemistry . Katritzky AR, Rees C. Pergamon; Oxford: 1996
    • 3a Hallinan EA, Tsymbalov S, Dorn CR, Pitzele BS, Hansen DW. Jr. J. Med. Chem. 2002; 45: 1686
    • 3b Ford RE, Knowles P, Lunt E, Marshal SM, Penrose AJ, Ramsden CA, Summers AJ. H, Walker JL, Wrigth DE. J. Med. Chem. 1986; 29: 538
    • 3c Vieira E, Huwyler S, Jolidon S, Knoflach F, Mutel V, Wichmann J. Bioorg. Med. Chem. Lett. 2005; 15: 4628
    • 4a Toney JH, Fitzgerald P, Grover-Sharma N, Olson SH, May WJ, Sundelof JG, Vanderwall DE, Cleary KA, Grant SK, Wu JK. Chem. Biol. 1998; 5: 185
    • 4b Myznikov LV, Hrabálek A, Koldobskii GI. Chem. Heterocycl. Compd. (Engl. Transl.) 2007; 43: 1
    • 5a Kumar CN. S. S. P, Parida DK, Santhoshi A, Kota AK, Sridhar B, Rao VJ. Med. Chem. Commun. 2011; 2: 486
    • 5b Dolušić E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, Pochet L, Van den Eynde BT, Masereel B, Wouters J, Frédérick R. J. Med. Chem. 2011; 54: 5320
  • 6 Inada Y, Wada T, Shibouta Y, Ojima M, Sanada T, Ohtsuki K, Itoh K, Kubo K, Kohara Y, Naka TJ. Pharmacol. Exp. Ther. 1994; 268: 1540
    • 7a Wang G.-w, Sun B.-p, Ru Z.-l. Synth. Commun. 2008; 38: 3577
    • 7b Modarresi-Alam AR, Khamooshi F, Rostamizadeh M, Keykha H, Nasrollahzadeh M, Bijanzadeh H.-R, Kleinpeter E. J. Mol. Struct. 2007; 841: 61
    • 8a Sarvary A, Maleki A. Mol. Diversity 2015; 19: 189
    • 8b Roh J, Vávrová K, Hrabálek A. Eur. J. Org. Chem. 2012; 6101
    • 8c Koldobskii GI. Russ. J. Org. Chem. 2006; 42: 469
    • 8d Herr RJ. Bioorg. Med. Chem. 2002; 10: 3379
    • 9a Wittenberger SJ. Org. Prep. Proced. Int. 1994; 26: 499
    • 9b Sarvary A, Maleki A. RSC Adv. 2015; 5: 60938
    • 10a Bosch L, Vilarrasa J. Angew. Chem. Int. Ed. 2007; 46: 3926
    • 10b Venkateshwarlu G, Premalatha A, Rajanna KC, Saiprakash PK. Synth. Commun. 2009; 39: 4479
    • 10c Bonnamour J, Bolm C. Chem. Eur. J. 2009; 15: 4543
    • 11a Vorona S, Artamonova T, Zevatskii Y, Myznikov L. Synthesis 2014; 46: 781
    • 11b Demko ZP, Sharpless KB. J. Org. Chem. 2001; 66: 7945
    • 11c Lakshmi K, Kumar KB. S, Sridhar C. Adv. Synth. Catal. 2005; 347: 1212
    • 11d Bakunova SM, Bakunov SA, Patrick DA, Suresh Kumar EV. K, Ohemeng KA, Bridges AS, Wenzler T, Barszcz T, Kilgore Jones S, Werbovetz KA, Brun R, Tidwell RR. J. Med. Chem. 2009; 52: 2016
    • 12a Matthews DP, Green JE, Shuker AJ. J. Comb. Chem. 2000; 2: 19
    • 12b Kumar A, Narayanan R, Shechter H. J. Org. Chem. 1996; 61: 4462
    • 13a Nasrollahzadeh M, Bayat Y, Habibi D, Moshaee S. Tetrahedron Lett. 2009; 50: 4435
    • 13b Amantini D, Beleggia R, Fringuelli F, Pizzo F, Vaccaro L. J. Org. Chem. 2004; 69: 2896
    • 13c Roh J, Artamonova TV, Vávrová K, Koldobskii GI, Hrabálek A. Synthesis 2009; 2175
    • 14a Braun J, Keller W. Ber. Dtsch. Chem. Ges. 1932; 65: 1677
    • 14b Lang L, Li B, Liu W, Li J, Xu Z, Yin G. Chem. Commun. 2010; 46: 448
    • 14c Jin T, Kitahara F, Kamijo S, Yamamoto Y. Tetrahedron Lett. 2008; 49: 2824
    • 15a Sreedhar B, Kumar AS, Yadav D. Tetrahedron Lett. 2011; 52: 3565
    • 15b Wittenberger SJ, Donner BG. J. Org. Chem. 1993; 58: 4139
    • 16a Singh MS, Raghuvanshi K. Tetrahedron 2012; 68: 8683
    • 16b Frost CG, Hartley JP. Mini-Rev. Org. Chem. 2004; 1: 1
    • 16c Ranu BC. Eur. J. Org. Chem. 2000; 2347
    • 16d Behloul C, Bouchelouche K, Guijarro D, Foubelo F, Nájera C, Yus M. Synlett 2015; 26: 2399
    • 17a Yadav JS, Subba Reddy BV, Mahesh Kumar G, Madan C. Synlett 2001; 11: 1781
    • 17b Yadav JS, Subba Reddy BV, Vishweshwar Rao K, Purushothama Rao P, Sarita Raj K, Prasad AR, Prabhakar A, Jagadeesh B. Synlett 2006; 20: 3447
    • 18a Sun HB, Chen WL, Sun YH, Qin P, Qi X. Adv. Mater. Res. 2012; 396–398: 2416; DOI: 10.4028/www.scientific.net/AMR.396-398.2416
    • 18b Patil VS, Nandre KP, Borse AU, Bhosale SV. E-J. Chem. 2012; 9: 1145 ; DOI: 10.1155/2012/615891
    • 19a Antonowa A, Blattmann G, Hauptmann S. Z. Chem. 1977; 17: 142
    • 19b Patil UB, Kumthekar KR, Nagarkar JM. Tetrahedron Lett. 2012; 53: 3706
    • 19c Akula RK, Adimulam CS, Sathaiah G, Raju K, Narsaiah B, Shanthan RP. Lett. Org. Chem. 2014; 11: 440
    • 20a Nagarsenkar A, Prajapti SK, Guggilapu SD, Babu BN. Org. Lett. 2015; 17: 4592
    • 20b Guggilapu SD, Prajapti SK, Babu BN. Tetrahedron Lett. 2015; 56: 889
    • 20c Nagarsenkar A, Prajapti SK, Babu BN. J. Chem. Sci. 2015; 127: 711
    • 21a Barman DC, Thakur AJ, Prajapati D, Sandhu JS. Chem. Lett. 2000; 29: 1196
    • 21b Allen CL, Burel C, Williams JM. J. Tetrahedron 2010; 51: 2724
  • 22 5-Substituted 1H-Tetrazoles 2a–r: General Procedure InCl3 (3 mol%) was added to a stirred solution of the appropriate aldoxime (1 mmol) and NaN3 (1.5 mmol) in DMF (5 mL), and the mixture was heated to 120 °C. When the reaction was complete (TLC), the mixture was cooled to r.t., H2O (5 mL), 2 M aq HCl (10 mL), and EtOAc (10 mL) were successively added, and the mixture was stirred vigorously for 15 min. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with H2O, dried (Na2SO4), and filtered. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography [silica gel, EtOAc–hexane (9:1)]. 2-[4-(1H-Tetrazol-5-yl)phenoxy]acetohydrazide (2j) White solid; yield: 403 mg (72%); mp 197–199 °C. IR (KBr): 3432, 3318, 2869, 2645, 1614, 1521, 1450, 1280, 1172, 1108, 836 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 9.36 (br s, 1 H), 7.92 (d, J = 8.8 Hz, 2 H), 7.00 (d, J = 8.8 Hz, 2 H), 4.49 (s, 2 H). 13C NMR (125 MHz, DMSO-d 6): δ = 166.6, 159.4, 157.4, 127.2, 124.3, 114.6, 66.2. HRMS: m/z [M + H]+ calcd for C9H11N6O2: 235.0938; found: 235.0939. 5-(4-Phenyl-2-thienyl)-1H-tetrazole (2p) White solid; yield: 466 mg (83%); mp 240–242 °C. IR (KBr): 3220, 2260, 1574, 1478, 1261, 1153, 1066, 886, 778 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 8.21 (s, 1 H), 8.07 (s, 1 H), 7.74 (d, J = 7.2 Hz, 2 H), 7.68 (d, J = 7.2 Hz, 2 H) 7.45–7.33 (m, 1 H). 13C NMR (125 MHz, DMSO-d 6): δ = 162.7, 141.6, 140.8, 134.6, 128.9, 127.4, 127.2, 125.7, 125.6. HRMS: m/z [M + H]+ calcd for C11H9N4S: 229.0542; found: 229.0543.