Synlett 2016; 27(13): 1931-1935
DOI: 10.1055/s-0035-1561652
letter
© Georg Thieme Verlag Stuttgart · New York

Thulium Triflate Catalyzed Hydration of 2-Substituted 4-Alkynones

M.-Y. Chang*
Department of Medicinal and Applied Chemistry, and General Research Centers of R&D Office, Kaohsiung Medical University, Kaohsiung 807, Taiwan   Email: ychang@kmu.edu.tw
,
Y.-C. Cheng
Department of Medicinal and Applied Chemistry, and General Research Centers of R&D Office, Kaohsiung Medical University, Kaohsiung 807, Taiwan   Email: ychang@kmu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 18 March 2016

Accepted after revision: 08 May 2016

Publication Date:
01 June 2016 (online)


Abstract

We report on a facile synthetic route for the preparation of substituted 1,4-diketones by thulium triflate mediated hydration of substituted 4-alkynones in MeNO2 at 25 °C for five hours. The products were obtained in moderate to high yields.

Supporting Information

 
  • References and Notes

    • 2a Larock RC, Leong WW In Comprehensive Organic Synthesis . Trost BM, Fleming I, Semmelhack MF. Pergamon Press; Oxford: 1991. Vol. 4 269
    • 2b March J. Advanced Organic Chemistry . Wiley; New York: 1992. 4th ed 76

      For Hg2+, see:
    • 3a Imagawa H, Kurisaki T, Nishizawa M. Org. Lett. 2004; 6: 3679
    • 3b Nishizawa M, Skwarczynski M, Imagawa H, Suhihara T. Chem. Lett. 2002; 12
    • 3c Nishizawa M, Imagawa H, Yamamoto H. Org. Biomol. Chem. 2010; 8: 511

      For Au+, see:
    • 4a Roembke P, Schmidbaur H, Cronje S, Raubenheimer H. J. Mol. Catal. A: Chem. 2004; 212: 35
    • 4b Vasudevan A, Verzal MK. Synlett 2004; 631
    • 4c Marion N, Ramon RS, Nolan SP. J. Am. Chem. Soc. 2009; 131: 448
    • 4d Hashmi AS. K, Hengst T, Lothschutz C, Rominger F. Adv. Synth. Catal. 2010; 352: 1315

      For Ag+, see:
    • 5a Das R, Chakraboty D. Appl. Organomet. Chem. 2012; 26: 722
    • 5b Kataoka Y, Matsumoto O, Tani K. Chem. Lett. 1996; 727

      For Ag+/Au3+, see:
    • 6a Arcadi A, Alfonsi M, Chiarini M, Marinelli F. J. Organomet. Chem. 2009; 694: 576
    • 6b Belting V, Krause N. Org. Biomol. Chem. 2009; 7: 1221
    • 6c Wang T, Zhang J. Dalton Trans. 2010; 39: 4270

      For Ru2+, see:
    • 7a Chevallier F, Breit B. Angew. Chem. Int. Ed. 2006; 45: 1599
    • 7b Labonne A, Kribber T, Hintermann L. Org. Lett. 2006; 8: 5853
    • 7c Tokunaga M, Suzuki T, Koga N, Fukushima T, Horiuchi A, Wakatsuki Y. J. Am. Chem. Soc. 2001; 123: 11917
  • 8 For Rh3+, see: Blum J, Huminer H, Alper H. J. Mol. Catal. 1992; 75: 153

    • For Pt2+, see:
    • 9a Hartman J, Hiscox WC, Jennings PW. J. Org. Chem. 1993; 58: 7613
    • 9b Baidossi W, Lahav M, Blum J. J. Org. Chem. 1997; 62: 669
    • 9c Lucey DW, Atwoood JD. Organometallics 2002; 21: 2481
  • 10 For Os2+, see: Harman WD, Dobson JC, Taube H. J. Am. Chem. Soc. 1989; 111: 3061

    • For Ir3+, see:
    • 11a Kanemitsu H, Uehara K, Fukuzumi S, Ogo S. J. Am. Chem. Soc. 2008; 130: 17141
    • 11b Ogo S, Uehara K, Abura T, Watanabe Y, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 16520
    • 11c Hirabayashi T, Okimoto Y, Saito A, Morita M, Sakaguchi S, Ishii Y. Tetrahedron 2006; 62: 2231

      For Pd2+, see:
    • 12a Kamijo S, Yamamoto Y. J. Org. Chem. 2003; 68: 4764
    • 12b Arcadi A, Cacchi S, Fabrizi G, Marinelli F, Parisi LM. Tetrahedron 2003; 59: 4661
    • 12c Li Y, Yu Z. J. Org. Chem. 2009; 74: 8904
    • 12d Saito A, Enomoto Y, Hanzawa Y. Tetrahedron Lett. 2011; 52: 4299

      For Fe3+, see:
    • 13a Damiano JP, Pastel M. J. Organomet. Chem. 1996; 522: 303
    • 13b Wu X.-F, Bezier D, Darcel C. Adv. Synth. Catal. 2009; 351: 367
    • 13c Cabrero-Antonio JR, Leyva-Pérez A, Corma A. Chem. Eur. J. 2012; 18: 11107
    • 13d Park J, Yeon J, Lee PH, Lee K. Tetrahedron Lett. 2013; 54: 4414

      For Cu2+, see:
    • 14a Jha M, Shelke GM, Pericherla K, Kumar A. Tetrahedron Lett. 2014; 55: 4815
    • 14b Hassam M, Li W.-S. Tetrahedron 2015; 71: 2719

      For In3+, see:
    • 15a Feng X, Tan Z, Chen D, Shen Y, Guo C.-C, Xiang J, Zhu C. Tetrahedron Lett. 2008; 49: 4110
    • 15b Tsuji H, Yamagata K.-i, Ueda Y, Nakamura E. Synlett 2010; 1015
    • 15c Chang M.-Y, Lu Y.-J, Cheng Y.-J. Tetrahedron 2015; 71: 6840
  • 16 For Zn2+, see: Al-huniti MH, Lepore SD. Org. Lett. 2014; 16: 4154

    • For review on Ln(OTf)3-mediated reactions, see:
    • 17a Ladziata U. ARKIVOC 2014; (i): 307
    • 17b Kobayashi S, Sugiura M, Kitagawa H, Lam WW.-L. Chem. Rev. 2002; 102: 2227

      Metal triflates mediated synthesis by authors, for Sc(OTf)3, see:
    • 18a Chang M.-Y, Chen Y.-C, Chan C.-K, Huang GG. Tetrahedron 2015; 71: 2095

    • For Fe(OTf)3, see:
    • 18b Chang M.-Y, Chen Y.-H, Cheng Y.-C. Tetrahedron 2016; 72: 518

    • For Bi(OTf)3, see:
    • 18c Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2015; 17: 1264
    • 18d Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2015; 17: 3142
    • 18e Chang M.-Y, Cheng Y.-C. Org. Lett. 2015; 17: 5702

    • For In(OTf)3, see:
    • 18f Chang M.-Y, Lu Y.-J, Cheng Y.-C. Tetrahedron 2015; 71: 6840

      Synthetic applications on α-substituted β-ketosulfones by authors, for styrylsulfones, see:
    • 19a Chang M.-Y, Chen Y.-C, Chan C.-K. Synlett 2014; 25: 1739

    • For vinylcyclopropanes, see:
    • 19b Chang M.-Y, Chen Y.-C, Chan C.-K. Tetrahedron 2014; 70: 8908

    • For 2,5-diaryltetrahydrofurans, see:
    • 19c Chang M.-Y, Cheng Y.-C. Synlett 2016; 27: 854

    • For 2,6-diaryltetrahydropyrans, see:
    • 19d Chang M.-Y, Lu Y.-J, Cheng Y.-C. Tetrahedron 2015; 71: 1192

    • For 2-arylpyrroles, see:
    • 19e Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2014; 16: 6252

    • For 2-vinylfurans, see:
    • 19f Chan C.-K, Lu Y.-J, Chang M.-Y. Tetrahedron 2015; 71: 9544

    • For tetralins and benzosuberans, see:
    • 19g Chang M.-Y, Cheng Y.-C. Org. Lett. 2016; 18: 608

    • For 1-aryltetralins, see:
    • 19h Chang M.-Y, Cheng Y.-C. Org. Lett. 2016; 18: 1682

    • For 1-arylnaphthalenes, see:
    • 19i Chang M.-Y, Huang Y.-H, Wang H.-S. Tetrahedron 2016; 72: 1888

    • For phenanthrenes, see:
    • 19j Chang M.-Y, Chen Y.-C, Chan C.-K. Tetrahedron 2015; 71: 782

    • For phenanthrofurans, see:
    • 19k Chan C.-K, Chen Y.-C, Chen Y.-L, Chang M.-Y. Tetrahedron 2015; 71: 9187

      For review articles, see:
    • 20a Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
    • 20b Khaghaninejad S, Heravi MM. Adv. Heterocycl. Chem. 2014; 111: 95
    • 20c Donohoe TJ, Pullin RD. C. Chem. Commun. 2012; 48: 11924
    • 20d Schmuck C, Rupprecht D. Synthesis 2007; 3095
    • 21a Eymur S, Gollu M, Tanyeli C. Turkish J. Chem. 2013; 37: 586
    • 21b Yetra SR, Patra A, Biju AT. Synthesis 2015; 47: 1357
    • 21c Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 21d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 21e Nair V, Deepthi A. Chem. Rev. 2007; 107: 1862
    • 22a Ragno D, Bortolini O, Fantin G, Fogagnolo M, Giovannini PP, Massi A. J. Org. Chem. 2015; 80: 1937
    • 22b Huang S, Kotzner L, De CK, List B. J. Am. Chem. Soc. 2015; 137: 3446
    • 22c Peralta-Hernández E, Blé-Gonzáles EA, Garcia-Medrano-Bravo VA, Cordero-Vargas A. Tetrahedron 2015; 71: 2234
    • 22d Zhang F, Du P, Chen J, Wang H, Luo Q, Wang X. Org. Lett. 2014; 16: 1932
    • 22e Bar G, Parsons AF, Thomas CB. Org. Biomol. Chem. 2003; 1: 373
    • 22f Bar G, Parsons AF, Thomas CB. Synlett 2002; 1069
    • 22g Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737
    • 22h Schweitzer-Chaput B, Kurten T, Klussmann M. Angew. Chem. Int. Ed. 2015; 54: 11848
    • 22i Christoffers J, Werner T, Frey W, Baro A. Eur. J. Org. Chem. 2003; 4879
    • 22j Rossle M, Werner T, Frey W, Christoffers J. Eur. J. Org. Chem. 2005; 5031

      Tm(OTf)3-mediated reactions, for the Ferrier rearrangement, see:
    • 23a Chen P, Bi B. Tetrahedron Lett. 2015; 56: 4895

    • For Diels–Alder cycloadditions, see:
    • 23b Yoshida K, Morikawa T, Yokozuka N, Harada S, Nishida A. Tetrahedron Lett. 2014; 55: 6907

      Recent Tm(III) salts mediated reactions, see:
    • 24a Shie J.-J, Workman PS, Evans WJ, Fang J.-M. Tetrahedron Lett. 2004; 45: 2703
    • 24b Taydakov IV, Nelyubina TV. Tetrahedron Lett. 2013; 54: 1704
    • 24c Szostak R, Aube J, Szoztak M. J. Org. Chem. 2015; 80: 7905
  • 25 Representative Synthetic Procedure of Skeleton 4 Tm(OTf)3 (62 mg, 0.1 mmol) was added to a solution of 3 (1.0 mmol) in MeNO2 (5 mL) at r.t. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to r.t. The solvent of reaction mixture was concentrated and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford the crude product under reduced pressure. Purification on silica gel (hexanes–EtOAc = 8:1 to 3:1) afforded 4. Compound 4a: Rf = 0.3 (hexanes–EtOAc = 8:1); yield 88% (290 mg); colorless oil. ESI-HRMS: m/z calcd for C18H19O4S [M+ + 1]: 331.1004; found: 331.1010. 1H NMR (400 MHz, CDCl3): δ = 7.91 (d, J= 8.8 Hz, 2 H), 7.58–7.54 (m, 3 H), 7.43–7.39 (m, 2 H), 7.24 (d, J = 8.4 Hz, 2 H), 5.51 (dd, J = 2.8, 10.8 Hz, 1 H), 3.49 (dd, J = 10.8, 18.0 Hz, 1 H), 3.29 (dd, J = 2.8, 18.0 Hz, 1 H), 2.40 (s, 3 H), 2.16 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.79, 191.59, 145.60, 136.58, 133.68, 133.54, 129.68 (2×), 129.36 (2×), 129.17 (2×), 128.49 (2×), 65.55, 41.87, 29.55, 21.64. Compound 4b: Rf = 0.3 (hexanes–EtOAc = 8:1); yield 86% (299 mg); colorless oil. ESI-HRMS: m/z calcd for C18H18FO4S [M+ + 1]: 349.0910; found: 349.0918. 1H NMR (400 MHz, CDCl3): δ = 7.99–7.94 (m, 2 H), 7.57 (d, J = 8.4 Hz, 2 H), 7.27 (d, J = 8.8 Hz, 2 H), 7.13–7.07 (m, 2 H), 5.43 (dd, J = 2.8, 10.8 Hz, 1 H), 3.47 (dd, J = 10.8, 18.0 Hz, 1 H), 3.27 (dd, J = 2.8, 18.0 Hz, 1 H), 2.42 (s, 3 H), 2.15 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.81, 190.02, 166.13 (d, J = 255.5 Hz), 145.77, 133.36, 133.03 (d, J = 3.0 Hz), 132.97 (d, J = 9.1 Hz, 2×), 130.53, 129.74, 129.35, 128.84, 115.71 (d, J = 21.9 Hz, 2×), 65.58, 41.99, 29.49, 21.65.

    • For recent reviews on synthesis of pyridazines, see:
    • 26a Bourguignon JJ, Oumouch S, Schmitt M. Curr. Org. Chem. 2006; 10: 277
    • 26b Elnagdi MH, Al-Awadi NA, Abdelhamid IA. Adv. Heterocycl. Chem. 2009; 97: 1
    • 26c Haider N, Holzer W. Sci. Synth. 2004; 16: 125

      For the potential biological activities of pyridazines, see:
    • 27a Gyoten M, Nagaya H, Fukuda S, Ashida Y, Kawano Y. Chem. Pharm. Bull. 2003; 51: 122
    • 27b Tamayo N, Liao L, Goldberg M, Powers D, Tudor YY, Yu V, Wong LM, Henkle B, Middleton S, Syed R, Harvey T, Jang G, Hungate R, Dominguez C. Bioorg. Med. Chem. Lett. 2005; 15: 2409
    • 27c Emmerich J, Hu Q, Hanke N, Hartmann RW. J. Med. Chem. 2013; 56: 6022

      For recent examples on the synthesis of pyridazines, see:
    • 28a Gao Q, Zhu Y, Lian M, Liu M, Yuan J, Wu A, Yin G. J. Org. Chem. 2012; 77: 9865
    • 28b Petiot P, Gagnon A. Eur. J. Org. Chem. 2013; 24: 5282
    • 28c Mboyi CD, Duhayon C, Canac Y, Chauvin R. Tetrahedron 2014; 70: 4957