Synlett 2016; 27(13): 1957-1962
DOI: 10.1055/s-0035-1561659
letter
© Georg Thieme Verlag Stuttgart · New York

Safe Generation and Direct Use of Chlorine Azide in Flow Chemistry: 1,2-Azidochlorination of Olefins and Access to Triazoles

Baptiste Leforestier
a   Novartis Institutes for Biomedical Research, Fabrikstrasse 2, 4056 Basel, Switzerland
b   Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques Et Technologiques (INPT-ENSIACET), 4 allée Emile Monso, 31030 Toulouse, France   Email: markus.voegtle@novartis.com
,
Markus Vögtle*
a   Novartis Institutes for Biomedical Research, Fabrikstrasse 2, 4056 Basel, Switzerland
› Author Affiliations
Further Information

Publication History

Received: 23 March 2016

Accepted after revision: 03 May 2016

Publication Date:
06 June 2016 (online)


Dedicated to Abdul Nachtigaller

Abstract

A safe, fast procedure for the formation of chlorine azide and its trapping by 1,2-addition reaction on olefins is described. ClN3 was generated in situ from NaN3 and NaOCl in the presence of acetic acid, hosted in an organic phase to avoid decomposition and exposed to various alkenes. A copper-catalyzed click reaction then afforded triazoles from the resulting addition products. Telescoping of both reactions was enabled by an in-line workup and subsequent liquid–liquid separation.

Supporting Information

 
  • References and Notes

    • 1a Griess P. Proc. R. Soc. London, Ser. A 1864; 13: 375
    • 1b Bräse S, Banert K. Organic Azides: Syntheses and Applications . John Wiley & Sons; Hoboken, NJ: 2011
    • 2a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 2b Huisgen R. Proc. Chem. Soc. 1961; No. October: 357
    • 2c Huisgen R. Angew. Chem. 1963; 75: 604
    • 2d Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 2e Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 2f Demko ZP, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2110
    • 2g Demko ZP, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2113
    • 2h Cantillo D, Gutmann B, Kappe CO. Org. Biomol. Chem. 2016; 14: 853
    • 3a Hassner A, Levy LA. J. Am. Chem. Soc. 1965; 87: 4203
    • 3b Hassner A, Boerwinkle F. Tetrahedron Lett. 1969; 3309
  • 4 Valiulin RA, Mamidyala S, Finn MG. J. Org. Chem. 2015; 80: 2740
  • 5 Raschig F. Ber. Dtsch. Chem. Ges. 1908; 41: 4194
    • 6a Malet-Sanz L, Susanne F. J. Med. Chem. 2012; 55: 4062
    • 6b Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
    • 6c Hartman RL, McMullen JP, Jensen KF. Angew. Chem. Int. Ed. 2011; 50: 7502
    • 7a Baumann M, Baxendale IR, Martin LJ, Ley SV. Tetrahedron 2009; 65: 6611
    • 7b Pelleter J, Renaud F. Org. Process Res. Dev. 2009; 13: 698
    • 7c Brocklehurst CE, Lehmann H, La Vecchia L. Org. Process Res. Dev. 2011; 15: 1447
  • 8 Baroud CN, Gallaire F, Dangla R. Lab. Chip 2010; 10: 2032
  • 9 Betterton EA, Lowry J, Ingamells R, Venner B. J. Hazard. Mater. 2010; 182: 716
    • 10a Roy B, Chakraborty A, Ghosh SK, Basak A. Bioorg. Med. Chem. Lett. 2009; 19: 7007
    • 10b Horne WS, Olsen CA, Beierle JM, Montero A, Ghadiri MR. Angew. Chem. Int. Ed. 2009; 48: 4718
    • 10c Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Med. Res. Rev. 2008; 28: 278
  • 11 Bogdan AR, Sach NW. Adv. Synth. Catal. 2009; 351: 849
    • 12a Nolte C, Mayer P, Straub BF. Angew. Chem. Int. Ed. 2007; 46: 2101
    • 12b Shao C, Wang X, Zhang Q, Luo S, Zhao J, Hu Y. J. Org. Chem. 2011; 76: 6832
  • 13 Baxendale IR, Ley SV, Mansfield AC, Smith CD. Angew. Chem. Int. Ed. 2009; 48: 4017
  • 14 General Procedure ‘Method A’: A solution of organic substrate and acetic acid in toluene (2 mL, 0.18 M and 1.27 M, respectively) and a solution of sodium azide and sodium hypochlorite in H2O (2 mL, 0.67 M and 0.60 M respectively) were combined at a T-piece and reacted at 20 °C in a 10-mL PFA coiled tube reactor (1mm diameter). The combined stream was collected in a vigorously stirred vial containing NaHCO3 (4 mL, sat aq) and was left to stir for 5–10 min. The biphasic mixture was extracted with CH2Cl2 (3 × 5 mL), the combined organics were dried over Na2SO4, concentrated under reduced pressure. When necessary, the crude product was purified by flash chromatography (silica gel, heptane–EtOAc).
  • 15 1-(2-Azido-1-chloroethyl)-3-nitrobenzene (1a): Isolated as a yellow oil (73 mg, 0.32 mmol, 92%); Rf (20% EtOAc in hexane) 0.17. 1H NMR (400 MHz, CDCl3): δ = 8.31 (t, J = 2.0 Hz, 1 H, ArH), 8.24 (ddd, J = 8.3, 2.3, 1.0 Hz, 1 H, ArH), 7.77 (dt, J = 7.8, 1.3 Hz, 1 H, ArH), 7.60 (t, J = 8.0 Hz, 1 H, ArH), 5.05 (t, J = 6.7 Hz, 1 H, CHCl), 3.84 (dd, J = 12.9, 6.8 Hz, 1 H, CHaHbN3), 3.75 (dd, J = 12.9, 6.8 Hz, 1 H, CHaHbN3). 13C NMR (101 MHz, CDCl3): δ = 148.7, 140.4, 133.6, 130.2, 124.2, 122.7, 59.5, 57.8.
  • 16 Adamo A, Heider PL, Weeranoppanant N, Jensen KF. Ind. Eng. Chem. Res. 2013; 52: 10802
  • 17 General Procedure: A 0.1 M solution of 1,2-azido chloride x in toluene (0.25 mL/min) and a 0.1 M solution of alkyne y in MeCN (0.25 mL/min) were combined at a T-piece and reacted at 100 °C in a 5-mL copper-coil reactor (Vapourtec, 1-mm diameter) for a residence time of 10 min (a 8 bar back pressure regulator was used). The combined stream was collected and directly concentrated under reduced pressure. Purification, if necessary, was performed either by flash chromatography or by redissolving the crude mixture in MeCN and provoking precipitation by the slow addition of H2O.
  • 18 1-[2-Chloro-2-(4-chlorophenyl)propyl]-4-(4-methoxyphenyl)-1H-1,2,3-triazole (8a′): Isolated as a white solid (69 mg, 0.191 mmol, 95 %). 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 8.2 Hz, 2 H, ArH), 7.57 (s, 1 H, CHtriazole), 7.48 (d, J = 8.6 Hz, 2 H, ArH), 7.37 (d, J = 8.5 Hz, 2 H, ArH), 6.95 (d, J = 7.9 Hz, 2 H, ArH), 4.88 (s, 2 H, CH2), 3.83 (s, 3 H, OMe), 1.96 (s, 3 H, Me). 13C NMR (101 MHz, CDCl3): δ = 159.9, 140.0, 134.9, 129.0, 128.0, 127.2, 123.1, 120.2, 114.4, 70.0, 62.6, 55.5, 28.7. MS (ESI): m/z = 362.1 [M + H]+.