Synlett 2016; 27(13): 1893-1897
DOI: 10.1055/s-0035-1561863
synpacts
© Georg Thieme Verlag Stuttgart · New York

Cα–H Oxidations of Amines to Amides: Expanding Mechanistic Understanding and Amine Scope through Catalyst Development

Christopher J. Legacy
Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA   Email: cjlegacy@wpi.edu   Email: mhemmert@wpi.edu
,
Marion H. Emmert*
Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA   Email: cjlegacy@wpi.edu   Email: mhemmert@wpi.edu
› Author Affiliations
Further Information

Publication History

Received: 21 March 2016

Accepted after revision: 21 April 2016

Publication Date:
13 May 2016 (online)


Abstract

This highlight provides a general overview of Cα–H oxidations of amines to form amides. Initial as well as recent examples are reviewed with a particular focus on existing challenges regarding substrate scope and reaction conditions. Finally, one very recently established catalyst system is described in detail which achieves the iron-catalyzed, Cα–H oxidation of amines under mild conditions.

1 Introduction

2 First C–H Oxygenations

3 State of the Art: Oxidations of Primary, Secondary, Cyclic, Benzylic, and Aromatic Amines

4 General Iron-Catalyzed C–H Oxidations under Mild Conditions

5 Conclusions

 
  • References and Notes

  • 1 Pattabiraman VR, Bode JW. Nature (London, U.K.) 2011; 480: 471
  • 2 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
  • 3 Murahashi S, Naota T, Yonemura K. J. Am. Chem. Soc. 1988; 110: 8256
  • 4 For a nontransition-metal-catalyzed early example of Cα–H Oxidation, see: Moriarty RM, Vaid RK, Duncan MP, Ochiai M, Inenaga M, Nagao Y. Tetrahedron Lett. 1988; 29: 6913
  • 5 Tanaka K.-I, Yoshifuji S, Nitta Y. Chem. Pharm. Bull. 1988; 36: 3125
  • 6 Barton DH. R, Boivin J, Gaudin D, Jankowski K. Tetrahedron Lett. 1989; 30: 1381
  • 7 Murahashi S.-I, Mitani A, Kitao K. Tetrahedron Lett. 2000; 41: 10245
  • 8 Kim JW, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2008; 47: 9249
  • 9 Khusnutdinova JR, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2014; 136: 2998
  • 10 Preedasuriyachai P, Chavasiri W, Sakurai H. Synlett 2011; 1121
  • 11 Klobukowski ER, Mueller ML, Angelici RJ, Woo LK. ACS Catal. 2011; 1: 703
  • 12 Wang Y, Kobayashi H, Yamaguchi K, Mizuno N. Chem. Commun. 2012; 48: 2642
  • 13 Xu W, Jiang Y, Fu H. Synlett 2012; 23: 801
  • 14 Genovino J, Lütz S, Sames D, Touré BB. J. Am. Chem. Soc. 2013; 135: 12346
  • 15 Legacy CJ, Wang A, O’Day BJ, Emmert MH. Angew. Chem. Int. Ed. 2015; 54: 14907
  • 16 Chiavarino B, Cipollini R, Crestoni ME, Fornarini S, Lanucara F, Lapi A. J. Am. Chem. Soc. 2008; 130: 3208
  • 17 Nam W, Valentine JS. J. Am. Chem. Soc. 1993; 115: 1772
  • 18 Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
  • 19 Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 5568
  • 20 Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
  • 21 Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
  • 22 DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
  • 23 Murahashi S.-I, Komiya N, Terai H, Nakae T. J. Am. Chem. Soc. 2003; 125: 15312