Synlett 2016; 27(07): 1024-1026
DOI: 10.1055/s-0035-1561933
cluster
© Georg Thieme Verlag Stuttgart · New York

Cluster Preface: Non-Covalent Interactions in Asymmetric Catalysis

Robert J. Phipps*
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom   Email: rjp71@cam.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 04 March 2016

Accepted: 04 March 2016

Publication Date:
08 April 2016 (online)


Robert J. Phipps

obtained his undergraduate degree from Imperial College, London in 2006 before moving to the University of Cambridge where he completed his PhD studies with Prof. Matthew Gaunt in 2010. He spent two years working with Prof. F. Dean Toste at UC Berkeley on asymmetric fluorination as a Marie Curie Postdoctoral Fellow. In 2013, he returned to Cambridge where he commenced independent research from 2014 as a Royal Society University Research Fellow. He has been the recipient of the Reaxys PhD prize (2010) and more recently a Thieme Chemistry Journal Award (2016).

Abstract

The successful harnessing of non-covalent interactions to activate functional groups and control selectivity in chemical reactions is a relatively recent phenomenon in synthetic chemistry, but one that has delivered ground-breaking results, particularly over the last decade, and still bears enormous promise. This Cluster brings together seven manuscripts which represent cutting edge advances in both understanding and applications of non-covalent interactions for asymmetric catalysis.

 
  • References and Notes

  • 1 Ojima I. Catalytic Asymmetric Synthesis. 3rd ed Wiley; Weinheim: 2010
  • 2 Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
  • 3 Corey EJ, Lee TW. Chem. Commun. 2001; 1321
  • 4 Knowles RR, Jacobsen EN. Proc. Natl. Acad. Sci. USA, 2010; 107: 20678
    • 5a Corey EJ, Grogan MJ. Org. Lett. 1999; 1: 157
    • 5b Miller SJ, Copeland GT, Papaioannou N, Horstmann TE, Ruel EM. J. Am. Chem. Soc. 1998; 120: 1629
    • 5c Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
  • 6 Comprehensive Enantioselective Organocatalysis. Dalko PI. Wiley; Weinheim: 2013
  • 7 MacMillan DW. C. Nature 2008; 455: 304
  • 8 Bahmanyar S, Houk KN, Martin HJ, List B. J. Am. Chem. Soc. 2003; 125: 2475
  • 9 Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
  • 10 Turkmen YE, Zhu Y, Rawal VH In Comprehensive Enantioselective Organocatalysis. Dalko PI. Wiley; Weinheim: 2013. Vol. 1
  • 11 Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 12a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 12b Schreiner PR, Jakab G In Comprehensive Enantioselective Organocatalysis. Dalko PI. Wiley; Weinheim: 2013. Vol. 1
    • 13a Dolling UH, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
    • 13b Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
    • 13c Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 14a Phipps RJ, Hamilton GL, Toste FD. Nature Chem. 2012; 4: 603
    • 14b Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 14c Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 15a Ohmatsu K, Ito M, Kunieda T, Ooi T. Nature Chem. 2012; 4: 473
    • 15b Ohmatsu K, Hara Y, Ooi T. Chem. Sci. 2014; 5: 3645
  • 16 Knowles RR, Lin S, Jacobsen EN. J. Am. Chem. Soc. 2010; 132: 5030
    • 17a Zhang Q, Tiefenbacher K. Nature Chem. 2015; 7: 197
    • 17b Yamada S, Fossey JS. Org. Biomol. Chem. 2011; 9: 7275
  • 18 Zhao Y, Cotelle Y, Avestro A.-J, Sakai N, Matile S. J. Am. Chem. Soc. 2015; 137: 11582
  • 19 Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1734
  • 20 Zhao C, Sun Q.-F, Hart-Cooper WM, DiPasquale AG, Toste FD, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2013; 135: 18802
  • 21 Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1660