Synlett 2016; 27(14): 2140-2144
DOI: 10.1055/s-0035-1562361
cluster
© Georg Thieme Verlag Stuttgart · New York

Twisted Polycyclic Aromatic Hydrocarbon with a Cyclooctatetraene Core via Formal [4+4] Dimerization of Indenofluorene

Shunpei Nobusue
Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan   Email: tobe@chem.es.osaka-u.ac.jp
,
Yoshito Tobe*
Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan   Email: tobe@chem.es.osaka-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 16 April 2016

Accepted after revision: 04 May 2016

Publication Date:
08 June 2016 (online)


Abstract

A polycyclic aromatic hydrocarbon having a twisted cyclooctatetraene (COT) core was prepared by a formal [4+4] dimerization of an in situ generated indeno[2,1-a]fluorene derivative. The compound consists of two indenofluorene frameworks connected with two double bonds and adopts a twisted geometry to avoid intramolecular steric repulsion. It exhibits a long-wavelength absorption band with a maximum at 634 nm extending to about 850 nm, which is consistent with the moderate antiaromaticity of the twisted COT ring as indicated by the NICS value (+11.9). A mechanism for cycloaddition reaction is proposed in terms of stepwise bond formations due to the diradical character of the indenofluorene framework, on the basis of the completely different reaction product obtained from the extended benzo analogue.

Supporting Information

 
  • References and Notes

    • 1a Laarhoven WH, Prinsen WJ. C. Top. Curr. Chem. 1984; 125: 63
    • 1b Meurer KP, Vögtle F. Top. Curr. Chem. 1985; 127: 1
    • 1c Janke RH, Haufe G, Würthwein E.-U, Borkent JH. J. Am. Chem. Soc. 1996; 118: 6031
    • 2a Scott LT. Pure Appl. Chem. 1996; 68: 291
    • 2b Wu Y.-T, Siegel JS. Chem. Rev. 2006; 106: 4843
    • 2c Higashibayashi S, Sakurai H. Chem. Lett. 2011; 40: 122
    • 2d Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
    • 3a Saito S, Osuka A. Angew. Chem. Int. Ed. 2011; 50: 4342
    • 3b Stępień M, Sprutta N, Latos-Grażyński L. Angew. Chem. Int. Ed. 2011; 50: 4288
    • 4a Anet FA. L. J. Am. Chem. Soc. 1962; 84: 671
    • 4b Trindle C, Wolfskill T. J. Org. Chem. 1991; 56: 5426
    • 4c Andrés JL, Castaño O, Morreale A, Palmeiro R, Gomperts R. J. Chem. Phys. 1998; 108: 203

      For the recent reviews, see:
    • 5a Nishinaga T, Ohmae T, Iyoda M. Symmetry 2010; 2: 76
    • 5b Nishinaga T In Chemical Science of π-Electron Systems . Akasaka T, Osuka A, Fukuzumi S, Kandori H, Aso Y. Springer; Heidelberg: 2015: 47
    • 5c Nishiuchi T, Iyoda M. Chem. Rec. 2015; 15: 329
    • 5d Han J.-W, Li X, Wong HN. C. Chem. Rec. 2015; 15: 107
    • 5e Deng C.-L, Peng X.-S, Wong HN. C In Polycyclic Arenes and Heteroarenes . Miao Q. Wiley-VCH; Weinheim: 2016: 111
  • 6 Simmross U, Müllen K. Chem. Ber. 1993; 126: 969
  • 7 Nobusue S, Shimizu A, Hori K, Hisaki I, Miyata M, Tobe Y. Angew. Chem. Int. Ed. 2013; 52: 4184
  • 8 Shimizu A, Tobe Y. Angew. Chem. Int. Ed. 2011; 123: 7038
  • 9 Le Berre A. Ann. Chim. 1957; 13: 371
  • 10 There are two possible diastereomers for diols 12 and 14 and dibromides 7 and 15. For diols 12 and 14, 1H NMR spectra indicated the presence of two diastereomers, whereas single isomers, whose stereochemistry was not determined, were obtained for dibromides 7 and 15.
  • 11 Thiele J, Balhorn H. Ber. Dtsch. Chem. Ges. 1904; 37: 1463
  • 12 Zeynizadeh B, Behyar T. Bull. Chem. Soc. Jpn. 2005; 78: 307
  • 13 Koelsch CK, Richter HJ. J. Org. Chem. 1938; 3: 465
  • 14 For the similar dehydrohalogenation, see: Reisch H, Wiesler U, Scherf U, Tuytuylkov N. Macromolecules 1996; 29: 8204
  • 15 Reaction of Compound 7 with Potassium tert-Butoxide To Give 10 A solution of potassium tert-butoxide (69.2 mg, 0.616 mmol) in THF (5 mL) was added dropwise to a solution of 7 (50.5 mg, 0.123 mmol) in THF (20 mL) over a period of 20 min with a syringe pump at 0 °C. After stirring at the same temperature for 20 min under an argon atmosphere, water (3 mL) was added, and then the reaction mixture was stirred for 15 min at 0 °C. The reaction mixture was diluted with water and extracted with CHCl3. The extract was washed with brine and dried over anhydrous MgSO4. After removal of the solvent, the residue was purified by chromatography (CHCl3–hexanes, 1:9) to afford 10 (10.3 mg, 34%) as a green solid; mp 223.0–224.0 °C. Analytical Data for Compound 10 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 8.0 Hz, 4 H), 7.57 (d, J = 7.6 Hz, 4 H), 7.38 (s, 4 H), 7.29 (dd, J = 7.6, 7.6 Hz, 4 H), 6.99 (dd, J = 7.6, 7.6 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 143.0, 141.9, 140.6, 140.3, 137.4, 129.2, 128.5, 125.0, 120.0, 118.8. IR (KBr): 3055, 3021, 2989, 1477, 1444, 1384, 1245, 965, 825, 763, 721. IR (KBr): 3055, 3021, 2989, 1477, 1444, 1384, 1245, 965, 825, 763, 721 cm–1. HRMS–FAB: m/z calcd for C40H20 [M]+: 500.1565; found: 500.1554.
  • 16 CCDC-1474507 (10) and CCDC-1474508 (17) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 17a Schleyer Pv. R, Maerker C, Dransfeld A, Jiao H, Hommes NJ. R. v. E. J. Am. Chem. Soc. 1996; 118: 6317
    • 17b Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer Pv. R. Chem. Rev. 2005; 105: 3842
  • 18 For the NICS calculation, the HF method was used because this had been shown to be reliable means for evaluating the NICS values. For example, see: Gogonea V, Schleyer Pv. R, Schreiner PR. Angew. Chem. Int. Ed. 1998; 37: 1945
  • 19 For the geometrical effect on NICS values of COT and its congeners, see ref. 5a.