Synlett 2016; 27(15): 2171-2177
DOI: 10.1055/s-0035-1562493
synpacts
© Georg Thieme Verlag Stuttgart · New York

Evolution of the Aza-Diels–Alder Reaction of 2H-Azirines

Hao Zhou
School of Pharmaceutical Engineering and Life Science, Changzhou University, 1 Middle Gehu Rd., Changzhou, Jiangsu Province, 213164, P. R. of China   eMail: shenmh@cczu.edu.cn   eMail: huadongxu@gmail.com
,
Mei-Hua Shen*
School of Pharmaceutical Engineering and Life Science, Changzhou University, 1 Middle Gehu Rd., Changzhou, Jiangsu Province, 213164, P. R. of China   eMail: shenmh@cczu.edu.cn   eMail: huadongxu@gmail.com
,
Hua-Dong Xu*
School of Pharmaceutical Engineering and Life Science, Changzhou University, 1 Middle Gehu Rd., Changzhou, Jiangsu Province, 213164, P. R. of China   eMail: shenmh@cczu.edu.cn   eMail: huadongxu@gmail.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 22. April 2016

Accepted after revision: 24. Mai 2016

Publikationsdatum:
21. Juni 2016 (online)


Abstract

The aza-Diels–Alder reaction of 2H-azirines with 1,3-dienes provides facile access to the structurally intriguing and difficult to access 1-azabicyclo[4.1.0]hept-3-ene scaffold. Its application in organic synthesis and medicinal chemistry is heavily hampered by the narrow substrate scope for both reacting partners. Herein, the discovery and exploration of this reaction are summarized and discussed. A recent breakthrough is an intramolecular version that overcomes the limitations of conventional methods.

 
  • References

    • 1a Hassner A, Anderson DJ. J. Am. Chem. Soc. 1971; 93: 4339
    • 1b Hassner A, Anderson DJ. J. Am. Chem. Soc. 1972; 94: 8255
    • 1c Anderson DJ, Hassner A. J. Org. Chem. 1973; 38: 2565
    • 1d Nair V. J. Org. Chem. 1972; 37: 802
    • 2a Hassner A, Anderson DJ. J. Org. Chem. 1974; 39: 2031
    • 2b Nair V. J. Org. Chem. 1972; 37: 2508
    • 3a Bhullar P, Gilchrist TL, Maddocks P. Synthesis 1997; 271
    • 3b Alves MJ, Gilchrist TL. Tetrahedron Lett. 1998; 39: 7579
    • 3c Alves MJ, Gilchrist TL. J. Chem. Soc., Perkin Trans. 1 1998; 299
    • 3d Gilchrist TL, Mendonca R. ARKIVOC 2000; (i): 769
  • 4 Alves MJ, Bickley JF, Gilchrist TL. J. Chem. Soc., Perkin Trans. 1 1999; 1399
    • 5a Ray CA, Risberg E, Somfai P. Tetrahedron Lett. 2001; 42: 9289
    • 5b Ray CA, Risberg E, Somfai P. Tetrahedron 2002; 58: 5983
    • 5c Sjöholm-Timén Å, Somfai P. J. Org. Chem. 2003; 68: 9958
    • 5d Timen AS, Fischer A, Somfai P. Chem. Commun. 2003; 1150
  • 6 Timen S, Somfai P. J. Org. Chem. 2003; 68: 9958
    • 7a Davis FA, Wu Y, Yan H, Prasad KR, McCoull W. Org. Lett. 2002; 4: 655
    • 7b Davis FA, Deng J. Org. Lett. 2007; 9: 1707
    • 8a Alves MJ, Fortes AG, Costa FT. Tetrahedron 2006; 62: 3095
    • 8b Alves MJ, Fortes AG, Costa FT, Duarte VC. M. Tetrahedron 2007; 63: 11167
    • 9a Alves MJ, Costa C, Duraes MM. Tetrahedron: Asymmetry 2009; 20: 1378
    • 9b Alves MJ, Durães MM, Fortes AG. Tetrahedron Lett. 2003; 44: 5079
    • 9c Alves MJ, Durães MM, Fortes AG. Tetrahedron 2004; 60: 6541
    • 10a Banert K, Meier B. Angew. Chem. Int. Ed. 2006; 45: 4015
    • 10b Banert K, Ihle A, Kuhtz A, Penk E, Saha B, Würthwein E.-U. Tetrahedron 2013; 69: 2501
  • 11 Xu H.-D, Zhou H, Pan Y.-P, Ren X.-T, Wu H, Han M, Han R.-Z, Shen M.-H. Angew. Chem. Int. Ed. 2016; 55: 2540
  • 12 Gilchrist TL. Aldrichimica Acta 2001; 34: 51
    • 13a Zi W, Zuo Z, Ma D. Acc. Chem. Res. 2015; 48: 702
    • 13b Mercado-Marin EV, Garcia-Reynaga P, Romminger S, Pimenta EF, Romney DK, Lodewyk MW, Williams DE, Andersen RJ, Miller SJ, Tantillo DJ, Berlinck RG. S, Sarpong R. Nature 2014; 509: 318
    • 13c Crossley SW. M, Shenvi RA. Chem. Rev. 2015; 115: 9465
  • 14 Xu H.-D, Jia Z.-H, Xu K, Han M, Jiang S.-N, Cao J, Wang J.-C, Shen M.-H. Angew. Chem. Int. Ed. 2014; 53: 9284