Synlett 2016; 27(16): 2293-2300
DOI: 10.1055/s-0035-1562506
synpacts
© Georg Thieme Verlag Stuttgart · New York

Phosphaphenalenes: An Evolution of the Phosphorus Heterocycles

Philip Hindenberg
Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany   Email: carlos.romero.nieto@oci.uni-heidelberg.de
,
Carlos Romero-Nieto*
Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany   Email: carlos.romero.nieto@oci.uni-heidelberg.de
› Author Affiliations
Further Information

Publication History

Received: 09 May 2016

Accepted after revision: 30 May 2016

Publication Date:
18 July 2016 (eFirst)

Abstract

The incorporation of phosphorus atoms into cyclic conjugated structures provides heterocycles with unique properties. Although the first phosphorus heterocycles date from the late 1950’s, their application in materials science is relatively recent. Extensive research efforts are being currently invested in the discovery of novel phosphorus architectures that could open up new horizons in materials science. In that context, we provide herein a comprehensive overview about the development of the phosphorus heterocycles, highlighting our recent contribution to the field; that is, a new synthetic protocol to access novel fused six-membered heterocycles. This method enables the preparation of highly versatile phosphaphenalene derivatives.

 
  • References

  • 1 Corbridge DE. C In Phosphorus: An Outline of Its Chemistry, Biochemistry and Technology. Elsevier; Amsterdam: 1985. 3rd ed. 21
  • 3 Compendium of Chemical Terminology (IUPAC). McNaught AD, Wilkinson A. Blackwell; Scientific Publications; Oxford: 1997. 2nd ed.
  • 4 Baumgartner T. Acc. Chem. Res. 2014; 47: 1613
  • 5 Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681
  • 6 Romero-Nieto, C. unpublished results.
  • 7 Mathey F. Chem. Rev. 1988; 88: 429
    • 8a Dienes Y, Durben S, Kárpáti T, Neumann T, Englert U, Nyulászi L, Baumgartner T. Chem. Eur. J. 2007; 13: 7487
    • 8b Matano Y, Miyajima T, Fukushima T, Kaji H, Kimura Y, Imahori H. Chem. Eur. J. 2008; 14: 8102
    • 9a Hobbs MG, Baumgartner T. Eur. J. Inorg. Chem. 2007; 3611
    • 9b Crassous J, Réau R. Dalton Trans. 2008; 6865
    • 9c Matano Y, Saito A, Fukushima T, Tokudome Y, Suzuki F, Sakamaki D, Kaji H, Ito A, Tanaka K, Imahori H. Angew. Chem. Int. Ed. 2011; 50: 8016
    • 10a Braye EH, Hubel W. Chem. Ind. (London) 1959; 1250
    • 10b Leavitt FC, Manuel TA, Johnson F. J. Am. Chem. Soc. 1959; 81: 3163
  • 11 Charrier C, Bonnard H, de Lauzon G, Mathey F. J. Am. Chem. Soc. 1983; 105: 6871
  • 12 Brèque A, Muller G, Bonnard H, Mathey F, Savignac P. EP 41447, 1981 ; Chem. Abstr. 1982, 96, 143076x
  • 13 Mercier F, Holand S, Mathey F. J. Organomet. Chem. 1986; 316: 271
  • 14 Fagan PJ, Nugent WA. J. Am. Chem. Soc. 1988; 110: 2310
    • 15a Hay C, Fischmeister C, Hissler M, Toupet L, Réau R. Angew. Chem. Int. Ed. 2000; 39: 1812
    • 15b Hay C, Hissler M, Fischmeister C, Rault-Berthelot J, Toupet L, Nyulászi L, Réau R. Chem. Eur. J. 2001; 7: 4222
    • 16a Baumgartner T, Neumann T, Wirges B. Angew. Chem. Int. Ed. 2004; 43: 6197
    • 16b Romero-Nieto C, Baumgartner T. Synlett 2013; 24: 920
  • 17 Fukazawa A, Hara M, Okamoto T, Son E.-C, Xu C, Tamao K, Yamaguchi S. Org. Lett. 2008; 10: 913
    • 18a Matano Y, Imahori H. Org. Biomol. Chem. 2009; 7: 1258
    • 18b Klintuch D, Krekić K, Bruhn C, Benkö Z, Pietschnig R. Eur. J. Inorg. Chem. 2016; 718
    • 19a Zhang P, Gao Y, Zhang L, Li Z, Liu Y, Tang G, Zhao Y. Adv. Synth. Catal. 2016; 358: 138
    • 19b Wu B, Chopra R, Yoshikai N. Org. Lett. 2015; 17: 5666
    • 20a Unoh Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 12975
    • 20b Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754
    • 21a Baba K, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11892 ; Angew. Chem. 2013, 125, 12108
    • 21b Nakano K, Oyama H, Nishimura Y, Nakasako S, Nozaki K. Angew. Chem. Int. Ed. 2012; 51: 695 ; Angew. Chem. 2012, 124, 71
    • 21c Kuninobu Y, Origuchi K, Takai K. Heterocycles 2012; 85: 3029
    • 21d Kuninobu Y, Yoshida T, Takai K. J. Org. Chem. 2011; 76: 7370
    • 21e Zhou Y, Gan Z, Su B, Li J, Duan Z, Mathey F. Org. Lett. 2015; 17: 5722
    • 21f Zhou Y, Gan Z, Su B, Li J, Duan Z, Mathey F. Org. Lett. 2015; 17: 5722
  • 22 Matano Y, Motegi Y, Kawatsu S, Kimura Y. J. Org. Chem. 2015; 80: 5944
  • 23 Joly D, Bouit P.-A, Hissler M. J. Mater. Chem. C 2016; 4: 3686
    • 24a Sanji T, Shiraishi K, Tanaka M. ACS Appl. Mater. Interfaces 2009; 1: 270
    • 24b Shiraishi K, Sanji T, Tanaka M. ACS Appl. Mater. Interfaces 2009; 1: 1379
    • 25a Ren Y, Kan WH, Henderson MA, Bomben PG, Berlinguette CP, Thangadurai V, Baumgartner T. J. Am. Chem. Soc. 2011; 133: 17014
    • 25b Romero-Nieto C, Marcos M, Merino S, Barberá J, Baumgartner T, Rodríguez-López J. Adv. Funct. Mater. 2011; 21: 4088
  • 26 Stolar M, Borau-Garcia J, Toonen M, Baumgartner T. J. Am. Chem. Soc. 2015; 137: 3366
  • 27 Ren Y, Baumgartner T. Inorg. Chem. 2012; 51: 2669
  • 28 Ashe AJ. III. Acc. Chem. Res. 1978; 11: 153
    • 29a Mézailles N, Le Floch P. Curr. Org. Chem. 2006; 10: 3
    • 29b Müller C, Vogt D. Dalton Trans. 2007; 5505
    • 29c Kollár L, Keglevich G. Chem. Rev. 2010; 110: 4257
    • 29d Le Floch P, Mathey F. Coord. Chem. Rev. 1998; 771: 179
    • 29e Müller C, Vogt D. C. R. Chim 2010; 13: 1127
    • 29f Le Floch P. Top. Heterocycl. Chem. 2009; 20: 147
  • 30 Nyulázi L. Chem. Rev. 2001; 101: 1229
  • 31 Romero-Nieto, C. unpublished results.
    • 32a Elschenbroich C, Nowotny M, Metz B, Massa W, Graulich J, Biehler K, Sauer W. Angew. Chem., Int. Ed. Engl. 1991; 30: 547
    • 32b Elschenbroich C, Bär F, Bilger E, Mahrwald D, Nowotny M, Metz B. Organometallics 1993; 12: 3373
  • 33 In particular, λ5-phosphinines were reported to strongly fluoresce, see: Dimroth K. Top. Curr. Chem. 1973; 38: 1
    • 34a Müller C, Wasserberg D, Weemers JJ. M, Pidko EA, Hoffmann S, Lutz M, Spek AL, Meskers SC. J, Janssen RA, van Santen RA, Vogt D. Chem. Eur. J. 2007; 13: 4548
    • 34b Roesch P, Nitsch J, Lutz M, Wiecko J, Steffen A, Müller C. Inorg. Chem. 2014; 53: 9855
    • 34c Broeckx LE. E, Delaunay W, Latouche C, Lutz M, Boucekkine A, Hissler M, Müller C. Inorg. Chem. 2013; 52: 10738
    • 34d Moussa J, Cheminel T, Freeman GR, Chamoreau L.-M, Williams JA. G, Amouri H. Dalton Trans. 2014; 43: 8162
    • 34e Chen X, Li Z, Yanan F, Grützmacher H. Eur. J. Inorg. Chem. 2016; 633
    • 34f Moussa J, Freeman GR, Williams JA. G, Chamoreau L.-M, Herson P, Amouri H. Eur. J. Inorg. Chem. 2016; 761
  • 35 He X, Lin J.-B, Kan WH, Baumgartner T. Angew. Chem. Int. Ed. 2013; 52: 8990
  • 36 Chai X, Cui X, Wang B, Yang F, Cai Y, Wu Q, Wang T. Chem. Eur. J. 2015; 21: 1
  • 37 Fukazawa A, Suda S, Taki M, Yamaguchi E, Grzybowski M, Sato Y, Higashiyama T, Yamaguchi S. Chem. Commun. 2016; 52: 1120
  • 38 Romero-Nieto C, López-Andarias A, Egler-Lucas C, Gebert F, Neus JP, Pilgram O. Angew. Chem. Int. Ed. 2015; 54: 15872