Synthesis 2016; 48(21): 3659-3683
DOI: 10.1055/s-0035-1562791
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Iron- and Cobalt-Complex-Catalyzed Tandem/Consecutive Processes Involving Hydrogenation

Jean-Luc Renaud*
Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France   Email: jean-luc.renaud@ensicaen.fr
,
Sylvain Gaillard
Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France   Email: jean-luc.renaud@ensicaen.fr
› Author Affiliations
Further Information

Publication History

Received: 15 June 2016

Accepted: 21 June 2016

Publication Date:
23 August 2016 (online)


Abstract

Complexes with non-noble metals are becoming more and more important in organometallic and organic chemistry. This mini-review covers the recent progress in cobalt- and iron-catalyzed consecutive reactions involving at least one hydrogenation step.

1 Introduction

2 Synthesis of the Iron and Cobalt Complexes

2.1 Synthesis of the Iron Complexes

2.2 Synthesis of the Cobalt Complexes

3 Hydrogenation of Carboxylic and Carbonic Compounds

3.1 Hydrogenation of Esters and Amides

3.2 Hydrogenation of Nitriles

3.3 Hydrogenation of Carbon Dioxide and Carbonates

3.3.1 Hydrogenation of Carbon Dioxide

3.3.2 Hydrogenation of Carbonate and Bicarbonate

4 Processes Involving a Hydrogenation Step

4.1 Reductive Amination

4.2 Alkylation of Amines

4.3 Alkylation of Ketones

4.4 Alkylation of Allylic Alcohols

5 Conclusion

 
  • References

    • 1a Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 1b Gopalaiah K. Chem. Rev. 2013; 113: 3248
    • 1c Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
    • 1d Pellissier H, Clavier H. Chem. Rev. 2014; 114: 2775
    • 1e Plietker B. Iron Catalysis in Organic Chemistry . Wiley-VCH; Weinheim: 2008
    • 1f Bauer E. Iron Catalysis II . Springer International Publishing; Switzerland: 2015
  • 2 Ollevier T. Catal. Sci. Technol. 2016; 6: 41

    • For recent reviews on iron chemistry, see:
    • 3a Bedford RB, Brenner PB. Top. Organomet. Chem. 2015; 50: 19
    • 3b Cassani C, Bergonzini G, Wallentin C.-J. ACS Catal. 2016; 6: 1640
    • 3c Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540

      For recent reviews on cobalt chemistry, see:
    • 4a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, von Wangelin AJ. Chem. Eur. J. 2014; 20: 6828
    • 4b Röse P, Hilt G. Synthesis 2016; 48: 463
    • 4c Cahiez G, Moyeux A, Cossy J. Adv. Synth. Catal. 2015; 357: 1983
  • 5 For a recent review on iron chemistry, see: Renaud J.-L, Gaillard S. Top. Organomet. Chem. 2015; 50: 83
  • 6 For a recent review on cobalt chemistry, see: Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
  • 7 For a recent review on iron chemistry, see: Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293

    • For recent reviews on cobalt chemistry, see:
    • 8a Tilly D, Dayaker G, Bachu P. Catal. Sci. Technol. 2014; 4: 2756
    • 8b Hyster TK. Catal. Lett. 2015; 145: 458

      For recent reviews on iron chemistry, see:
    • 9a Bullock RM. Science 2013; 342: 1054
    • 9b Mérel DS, Tran Do M.-L, Gaillard S, Dupau P, Renaud J.-L. Coord. Chem. Rev. 2015; 288: 50
    • 9c Dupau P, Tran Do ML, Gaillard S, Renaud J.-L. Angew. Chem. Int. Ed. 2014; 53: 13004
    • 9d Sues PE, Demmans KZ, Morris RH. Dalton Trans. 2014; 43: 7650
    • 9e Greenhalgh MD, Jones AS, Thomas SP. ChemCatChem 2015; 7: 190
    • 9f Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
    • 9g Morris RH. Acc. Chem. Res. 2015; 48: 1494
    • 9h Misal Castro LC, Li H, Sortais J.-B, Darcel C. Green Chem. 2015; 17: 2285
    • 9i Bigler R, Huber R, Mezzetti A. Synlett 2016; 27: 831
    • 9j McNeill E, Ritter T. Acc. Chem. Res. 2015; 48: 2330
  • 10 For a recent review on cobalt chemistry, see: Sun J, Deng L. ACS Catal. 2016; 6: 290
  • 11 Langer R, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 9948
  • 12 Werkmeister S, Junge K, Wendt B, Alberico E, Jiao H, Baumann W, Junge H, Gallou F, Beller M. Angew. Chem. Int. Ed. 2014; 53: 8722
  • 13 Koehne I, Schmeier TJ, Bielinski EA, Pan CJ, Lagaditis PO, Bernskoetter WH, Takase MK, Würtele C, Hazari N, Schneider S. Inorg. Chem. 2014; 53: 2133
  • 14 Chakraborty S, Dai H, Bhattacharya P, Fairweather NT, Gibson MS, Krause JA, Guan H. J. Am. Chem. Soc. 2014; 136: 7869
  • 15 Fillman KL, Bielinski EA, Schmeier TJ, Nesvet JC, Woodruff TM, Pan CJ, Takase MK, Hazari N, Neidig ML. Inorg. Chem. 2014; 53: 6066
  • 16 Chakraborty S, Leitus G, Milstein D. Chem. Commun. 2016; 52: 1812
  • 17 Ferdesel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9777
  • 18 Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc. 2012; 134: 20701
  • 19 Reppe W, Vetter H. Liebigs Ann. Chem. 1953; 582: 133
    • 20a Wender I, Friedel RA, Markby R, Sternberg HW. J. Am. Chem. Soc. 1955; 77: 4946
    • 20b Wender I, Friedel RA, Markby R, Sternberg HW. J. Am. Chem. Soc. 1956; 78: 3621
    • 20c Schrauzer GN. Chem. Ind. 1958; 1403
    • 20d Weiss E, Merenyi R, Hubel W. Chem. Ind. 1960; 407
    • 20e Boston JL, Sharp DW. L, Wilkinson G. J. Chem. Soc. 1962; 3488
    • 20f Krespan CG. J. Org. Chem. 1975; 40: 261
    • 20g Dickson RS, Mok C, Connor G. Aust. J. Chem. 1977; 30: 2143
    • 20h Kazlauskas RJ, Wrighton MS. Organometallics 1982; 1: 602
    • 20i Fornals D, Pericàs MA, Serratosa F, Vinaixa J, Font-Altaba M, Solans X. J. Chem. Soc., Perkin Trans. 1 1987; 2749
    • 20j Pearson AJ, Kim JB. Org. Lett. 2002; 4: 2837
    • 20k Rainier JD, Imbriglio JE. J. Org. Chem. 2000; 65: 7272
    • 20l Knölker H.-J, Heber J, Mahler CH. Synlett 1992; 1002
    • 20m Knölker H.-J, Heber J. Synlett 1993; 924
    • 20n Knölker H.-J, Baum E, Klauss R. Tetrahedron Lett. 1995; 36: 7647
    • 20o Pearson AJ, Dubbert RA. J. Chem. Soc., Chem. Commun. 1991; 202
    • 20p Pearson AJ, Shively RJ. Jr, Dubbert RA. Organometallics 1992; 11: 4096
    • 20q Pearson AJ, Shively RJ. Jr. Organometallics 1994; 13: 578
    • 20r Pearson AJ, Perosa A. Organometallics 1995; 14: 5178
    • 20s Pearson AJ, Yao X. Synlett 1997; 1281
  • 21 Schrauzer GN. J. Am. Chem. Soc. 1959; 81: 5307
    • 22a Moulin S, Dentel H, Pagnoux-Ozherelyeva A, Gaillard S, Poater A, Cavallo L, Lohier J.-F, Renaud J.-L. Chem. Eur. J. 2013; 19: 17881
    • 22b Mérel DS, Elie M, Lohier J.-F, Gaillard S, Renaud J.-L. ChemCatChem 2013; 5: 2939
    • 23a Knölker H.-J, Goesmann H, Klauss R. Angew. Chem. Int. Ed. 1999; 38: 72
    • 23b Knölker H.-J, Baum E, Goesmann H, Klauss R. Angew. Chem. Int. Ed. 1999; 38: 2064
    • 24a Haak E. Eur. J. Org. Chem. 2007; 2815
    • 24b Haak E. Eur. J. Org. Chem. 2008; 788
  • 25 Thai T.-T, Mérel DS, Poater A, Gaillard S, Renaud J.-L. Chem. Eur. J. 2015; 21: 7066
  • 26 Srimani D, Mukherjee A, Goldberg AF. G, Leitus G, Diskin-Posner Y, Shimon LJ. W, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12357
  • 27 Rösler S, Ertl M, Irrgang T, Kempe R. Angew. Chem. Int. Ed. 2015; 54: 15046
  • 28 Mukherjee A, Srimani D, Chakraborty S, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2015; 137: 8888
    • 29a Zhang G, Scott BL, Hanson SK. Angew. Chem. Int. Ed. 2012; 51: 12102
    • 29b Zhang G, Vasudeva KV, Scott BL, Hanson SK. J. Am. Chem. Soc. 2013; 135: 8668
  • 30 Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Chem. Eur. J. 2012; 18: 72
  • 31 Jeletic MS, Helm ML, Hulley EB, Mock MT, Appel AM, Linehan JC. ACS Catal. 2014; 4: 3755
  • 32 Zell T, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2014; 53: 4685
  • 33 Garg JA, Chakraborty S, Ben-David Y, Milstein D. Chem. Commun. 2016; 52: 5285
    • 34a Grey RA, Pez GP, Wallo A, Corsi J. J. Chem. Soc., Chem. Commun. 1980; 783
    • 34b Grey RA, Pez GP, Wallo A. J. Am. Chem. Soc. 1981; 103: 7536
  • 35 For a recent review on the outer-sphere hydrogenation mechanism, see: Eisenstein O, Crabtree RH. New J. Chem. 2013; 37: 21
  • 36 Elangovan S, Wendt B, Topf C, Bachmann S, Scalone M, Spannenberg A, Jiao H, Baumann W, Junge K, Beller M. Adv. Synth. Catal. 2016; 358: 820
    • 37a Semproni SP, Atienza CC. H, Chirik PJ. Chem. Sci. 2014; 5: 1956
    • 37b Semproni SP, Milsmann C, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 9211
  • 38 Bornschein C, Werkmeister S, Wendt B, Jiao H, Alberico E, Baumann W, Junge H, Junge K, Beller M. Nat. Commun. 2014; 5: 4111 ; doi: 10.1038/ncomms5111
    • 39a Fernández-Alvarez FJ, Aitani AM, Oro L. Catal. Sci. Technol. 2014; 4: 611
    • 39b Li Y.-N, Ma R, He L.-N, Diao Z.-F. Catal. Sci. Technol. 2014; 4: 1498
    • 39c Maeda C, Myazaki Y, Ema T. Catal. Sci. Technol. 2014; 4: 1482
  • 40 Evans GO, Newell CJ. Inorg. Chim. Acta 1978; 31: L387
  • 41 Tai C.-C, Chang T, Roller B, Jessop PG. Inorg. Chem. 2003; 42: 7340
  • 42 Yang X. ACS Catal. 2011; 1: 849
  • 43 Rivada-Wheelaghan O, Dauth A, Leitus G, Diskin-Posner Y, Milstein D. Inorg. Chem. 2015; 54: 4526
  • 44 Zhang Y, MacIntosh AD, Wong JL, Bielinski EA, Williard PG, Mercado BQ, Hazari N, Bernskoetter WH. Chem. Sci. 2015; 6: 4291
  • 45 Zhu F, Zhu-Ge L, Yang G, Zhou S. ChemSusChem 2015; 8: 609
  • 46 Ferdesel C, Jackstell R, Boddien A, Laurenczy G, Beller M. ChemSusChem 2010; 3: 1048
    • 47a For a review, see: Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
    • 47b For recent applications, see: Ružič M, Pečavar A, Prudič D, Kralj D, Scriban C, Zanotti-Gerosa A. Org. Process Res. Dev. 2012; 16: 1293
    • 48a Willoughby CA, Buchwald SL. J. Am. Chem. Soc. 1992; 114: 7562
    • 48b Willoughby CA, Buchwald SL. J. Org. Chem. 1993; 58: 7627
    • 48c Willoughby CA, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 8952
    • 48d Willoughby CA, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 11703
    • 50a Casey CP, Guan H. J. Am. Chem. Soc. 2007; 129: 5816
    • 50b Casey CP, Guan H. J. Am. Chem. Soc. 2009; 131: 2499
    • 50c For a recent review on Knölker’s iron complex, see: Quintard A, Rodriguez J. Angew. Chem. Int. Ed. 2014; 53: 4044
  • 51 Pagnoux-Ozherelyeva A, Pannetier N, Mbaye MD, Gaillard S, Renaud J.-L. Angew. Chem. Int. Ed. 2012; 51: 4976
  • 52 Fleischer S, Zhou S, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 5120
  • 53 For a review on transition-metal-frustrated Lewis pairs, see: Flynn SR, Wass DF. ACS Catal. 2013; 3: 2574
    • 54a Gajewski P, Renom-Carrasco M, Facchini SV, Pignataro L, Lefort L, de Vries JG, Ferraccioli R, Forni A, Piarulli U, Gennari C. Eur. J. Org. Chem. 2015; 1887
    • 54b Gajewski P, Renom-Carrasco M, Facchini SV, Pignataro L, Lefort L, de Vries JG, Ferraccioli R, Forni A, Piarulli U, Gennari C. Eur. J. Org. Chem. 2015; 5526
  • 55 Mérel DS, Gaillard S, Ward TR, Renaud J.-L. Catal. Lett. 2016; 146: 564
    • 56a Zhou S, Fleischer S, Junge K, Beller M. Angew. Chem. Int. Ed. 2011; 50: 5120
    • 56b Fleischer S, Zhou S, Werkmeister S, Junge K, Beller M. Chem. Eur. J. 2013; 19: 4997
  • 57 Zhou S, Fleischer S, Jiao H, Junge K, Beller M. Adv. Synth. Catal. 2014; 356: 3451

    • For reviews, see:
    • 58a Saidi O, Williams JM. J. Top. Organomet. Chem. 2011; 34: 77
    • 58b Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 58c Guillena G, Ramon DJ, Yus M. Chem. Rev. 2010; 110: 1611
  • 59 Yan T, Feringa BL, Barta K. Nat. Commun. 2014; 5: 5602
  • 60 Rawlings AJ, Diorazio LJ, Wills M. Org. Lett. 2015; 17: 1086
  • 61 Hollmann D, Jiao H, Spannenberg A, Bähn S, Tillack A, Parton P, Altink R, Beller M. Organometallic. 2009; 28: 473
  • 62 Pan H.-J, Ng TW, Zhao Y. Chem. Commun. 2015; 51: 11907
  • 63 Yan T, Feringa BL, Barta K. ACS Catal. 2016; 6: 381
  • 64 Zhang G, Yin Z, Zheng S. Org. Lett. 2016; 18: 300
  • 65 Saravanakumar A, Sortais J.-B, Beller M, Darcel C. Angew. Chem. Int. Ed. 2015; 54: 14483
  • 66 Quintard A, Constantieux T, Rodriguez J. Angew. Chem. Int. Ed. 2013; 52: 12883
  • 67 Roudier M, Constantieux T, Quintard A, Rodriguez J. Org. Lett. 2014; 16: 2802
  • 68 Watkins H, Liu O, Krivda JA (Firmenich) US Patent 5219836 (A), 1993
  • 69 For the isolation of lyconadin A, see: Kobayashi J, Hirasawa Y, Yoshida N, Morita H. J. Org. Chem. 2001; 66: 5901
  • 70 For the isolation of apratoxin A, see: Leusch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH. J. Am. Chem. Soc. 2001; 123: 5418