Semin intervent Radiol 2015; 32(04): 416-427
DOI: 10.1055/s-0035-1564705
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Navigational Tools for Interventional Radiology and Interventional Oncology Applications

Monzer A. Chehab
1   Department of Diagnostic Radiology and Molecular Imaging, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan
,
Waleed Brinjikji
2   Department of Radiology, Mayo Clinic, Rochester, Minnesota
,
Alexander Copelan
1   Department of Diagnostic Radiology and Molecular Imaging, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan
,
Aradhana M. Venkatesan
3   Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
10. November 2015 (online)

Abstract

The interventional radiologist is increasingly called upon to successfully access challenging biopsy and ablation targets, which may be difficult based on poor visualization, small size, or the proximity of vulnerable regional anatomy. Complex therapeutic procedures, including tumor ablation and transarterial oncologic therapies, can be associated with procedural risk, significant procedure time, and measurable radiation time. Navigation tools, including electromagnetic, optical, laser, and robotic guidance systems, as well as image fusion platforms, have the potential to facilitate these complex interventions with the potential to improve lesion targeting, reduce procedure time, and radiation dose, and thus potentially improve patient outcomes. This review will provide an overview of currently available navigational tools and their application to interventional radiology and oncology. A summary of the pertinent literature on the use of these tools to improve safety and efficacy of interventional procedures compared with conventional techniques will be presented.

 
  • References

  • 1 Ward TJ, Goldman RE, Weintraub JL. Electromagnetic navigation with multimodality image fusion for image-guided percutaneous interventions. Tech Vasc Interv Radiol 2013; 16 (3) 177-181
  • 2 Abi-Jaoudeh N, Kobeiter H, Xu S, Wood BJ. Image fusion during vascular and nonvascular image-guided procedures. Tech Vasc Interv Radiol 2013; 16 (3) 168-176
  • 3 Wood BJ, Kruecker J, Abi-Jaoudeh N , et al. Navigation systems for ablation. J Vasc Interv Radiol 2010; 21 (8, Suppl): S257-S263
  • 4 Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2 (1) 1-36
  • 5 Krücker J, Xu S, Venkatesan A , et al. Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 2011; 22 (4) 515-524
  • 6 Appelbaum L, Solbiati L, Sosna J, Nissenbaum Y, Greenbaum N, Goldberg SN. Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol 2013; 20 (2) 209-217
  • 7 Narsule CK, Sales Dos Santos R, Gupta A , et al. The efficacy of electromagnetic navigation to assist with computed tomography-guided percutaneous thermal ablation of lung tumors. Innovations (Phila) 2012; 7 (3) 187-190
  • 8 Penzkofer T, Bruners P, Isfort P , et al. Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol 2011; 20 (4) 226-233
  • 9 Abi-Jaoudeh N, Glossop N, Dake M , et al. Electromagnetic navigation for thoracic aortic stent-graft deployment: a pilot study in swine. J Vasc Interv Radiol 2010; 21 (6) 888-895
  • 10 Baszyński M, Moroń Z, Tewel N. Electromagnetic navigation in medicine – basic issues, advantages and shortcomings, prospects of improvement. J Phys Conf Ser 2010; 238 (1) 012056
  • 11 Schubert T, Jacob AL, Pansini M, Liu D, Gutzeit A, Kos S. CT-guided interventions using a free-hand, optical tracking system: initial clinical experience. Cardiovasc Intervent Radiol 2013; 36 (4) 1055-1062
  • 12 Wu B, Xiao YY, Zhang X, Zhang AL, Li HJ, Gao D-F. Magnetic resonance imaging-guided percutaneous cryoablation of hepatocellular carcinoma in special regions. Hepatobiliary Pancreat Dis Int 2010; 9 (4) 384-392
  • 13 Maeda T, Hong J, Konishi K , et al. Tumor ablation therapy of liver cancers with an open magnetic resonance imaging-based navigation system. Surg Endosc 2009; 23 (5) 1048-1053
  • 14 Phee SJ, Yang K. Interventional navigation systems for treatment of unresectable liver tumor. Med Biol Eng Comput 2010; 48 (2) 103-111
  • 15 Moser C, Becker J, Deli M, Busch M, Boehme M, Groenemeyer DHW. A novel Laser Navigation System reduces radiation exposure and improves accuracy and workflow of CT-guided spinal interventions: a prospective, randomized, controlled, clinical trial in comparison to conventional freehand puncture. Eur J Radiol 2013; 82 (4) 627-632
  • 16 Ritter M, Rassweiler M-C, Häcker A, Michel MS. Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol 2013; 31 (5) 1147-1151
  • 17 Hong CW, Xu S, Imbesi KL, Wood BJ. Integrated laser-guided CT biopsy. Clin Imaging 2013; 37 (6) 1135-1137
  • 18 Kagadis GC, Katsanos K, Karnabatidis D, Loudos G, Nikiforidis GC, Hendee WR. Emerging technologies for image guidance and device navigation in interventional radiology. Med Phys 2012; 39 (9) 5768-5781
  • 19 Koethe Y, Xu S, Velusamy G, Wood BJ, Venkatesan AM. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study. Eur Radiol 2014; 24 (3) 723-730
  • 20 Yanof J, Haaga J, Klahr P , et al. CT-integrated robot for interventional procedures: preliminary experiment and computer-human interfaces. Comput Aided Surg 2001; 6 (6) 352-359
  • 21 _MINT. Product Overview. June 2014. Available at: http://www.hansenmedical.com/us/en/vascular/magellan-robotic-system/product-overview . Accessed March 22, 2015
  • 22 Carrell T, Dastur N, Salter R, Taylor P. Use of a remotely steerable “robotic” catheter in a branched endovascular aortic graft. J Vasc Surg 2012; 55 (1) 223-225
  • 23 Antoniou GA, Riga CV, Mayer EK, Cheshire NJW, Bicknell CD. Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg 2011; 53 (2) 493-499
  • 24 Appelbaum L, Mahgerefteh SY, Sosna J, Goldberg SN. Image-guided fusion and navigation: applications in tumor ablation. Tech Vasc Interv Radiol 2013; 16 (4) 287-295
  • 25 Ewertsen C, Săftoiu A, Gruionu LG, Karstrup S, Nielsen MB. Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol 2013; 200 (3) W249-55
  • 26 Wood BJ, Locklin JK, Viswanathan A , et al. Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 2007; 18 (1, Pt 1): 9-24
  • 27 Glocker B, Sotiras A, Komodakis N, Paragios N. Deformable medical image registration: setting the state of the art with discrete methods. Annu Rev Biomed Eng 2011; 13: 219-244
  • 28 Slomka PJ, Baum RP. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S44-S55
  • 29 Albiin N. MRI of Focal Liver Lesions. Curr Med Imaging Rev 2012; 8 (2) 107-116
  • 30 de Rooij M, Hamoen EHJ, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 2014; 202 (2) 343-351
  • 31 Rud E, Baco E, Eggesbø HB. MRI and ultrasound-guided prostate biopsy using soft image fusion. Anticancer Res 2012; 32 (8) 3383-3389
  • 32 Pinto PA, Chung PH, Rastinehad AR , et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 2011; 186 (4) 1281-1285
  • 33 Xu S, Kruecker J, Turkbey B , et al. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg 2008; 13 (5) 255-264
  • 34 Kaplan I, Oldenburg NE, Meskell P, Blake M, Church P, Holupka EJ. Real time MRI-ultrasound image guided stereotactic prostate biopsy. Magn Reson Imaging 2002; 20 (3) 295-299
  • 35 Shepherd TM, Hess CP, Chin CT, Gould R, Dillon WP. Reducing patient radiation dose during CT-guided procedures: demonstration in spinal injections for pain. AJNR Am J Neuroradiol 2011; 32 (10) 1776-1782
  • 36 Mauri G, Cova L, De Beni S , et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol 2015; 38 (1) 143-151
  • 37 Koethe Y, Widemann BC, Hajjar F, Wood BJ, Venkatesan AM. PET-guided biopsy with needle navigation facilitates diagnosis of angiosarcoma in neurofibromatosis type 1. Pediatr Blood Cancer 2013; 60 (12) E166-E169
  • 38 Cornelis F, Silk M, Schoder H , et al. Performance of intra-procedural 18-fluorodeoxyglucose PET/CT-guided biopsies for lesions suspected of malignancy but poorly visualized with other modalities. Eur J Nucl Med Mol Imaging 2014; 41 (12) 2265-2272
  • 39 Schoellnast H, Larson SM, Nehmeh SA, Carrasquillo JA, Thornton RH, Solomon SB. Radiofrequency ablation of non-small-cell carcinoma of the lung under real-time FDG PET CT guidance. Cardiovasc Intervent Radiol 2011; 34 (Suppl. 02) S182-S185
  • 40 Ryan ER, Thornton R, Sofocleous CT , et al. PET/CT-guided interventions: personnel radiation dose. Cardiovasc Intervent Radiol 2013; 36 (4) 1063-1067
  • 41 Venkatesan AM, Kadoury S, Abi-Jaoudeh N , et al. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 2011; 260 (3) 848-856
  • 42 Braak SJ, van Strijen MJL, van Leersum M, van Es HW, van Heesewijk JPM. Real-Time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. AJR Am J Roentgenol 2010; 194 (5) W445-W51
  • 43 Braak SJ, van Melick HHE, Onaca MG, van Heesewijk JPM, van Strijen MJL. 3D cone-beam CT guidance, a novel technique in renal biopsy—results in 41 patients with suspected renal masses. Eur Radiol 2012; 22 (11) 2547-2552
  • 44 Busser WMH, Braak SJ, Fütterer JJ , et al. Cone beam CT guidance provides superior accuracy for complex needle paths compared with CT guidance. Br J Radiol 2013; 86 (1030) 20130310
  • 45 Cazzato RL, Battistuzzi J-B, Catena V , et al. Cone-beam computed tomography (CBCT) versus CT in lung ablation procedure: which is faster?. Cardiovasc Intervent Radiol 2015; 38 (5) 1231-1236
  • 46 Tselikas L, Joskin J, Roquet F , et al. Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol 2015; 38 (1) 167-176
  • 47 Floridi C, Muollo A, Fontana F , et al. C-arm cone-beam computed tomography needle path overlay for percutaneous biopsy of pulmonary nodules. Radiol Med (Torino) 2014; 119 (11) 820-827
  • 48 Braak SJ, van Strijen MJL, van Es HW, Nievelstein RAJ, van Heesewijk JPM. Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol 2011; 22 (4) 455-461
  • 49 Choo JY, Park CM, Lee NK, Lee SM, Lee HJ, Goo JM. Percutaneous transthoracic needle biopsy of small (≤ 1 cm) lung nodules under C-arm cone-beam CT virtual navigation guidance. Eur Radiol 2013; 23 (3) 712-719
  • 50 Gupta A, Grünhagen T. Live MR angiographic roadmapping for uterine artery embolization: a feasibility study. J Vasc Interv Radiol 2013; 24 (11) 1690-1697
  • 51 Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A. Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg 2011; 53 (3) 583-590
  • 52 Biasi L, Ali T, Ratnam LA, Morgan R, Loftus I, Thompson M. Intra-operative DynaCT improves technical success of endovascular repair of abdominal aortic aneurysms. J Vasc Surg 2009; 49 (2) 288-295
  • 53 Kobeiter H, Nahum J, Becquemin JP. Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation 2011; 124 (11) e280-e282
  • 54 Miyayama S, Yamashiro M, Okuda M , et al. Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. Cardiovasc Intervent Radiol 2009; 32 (2) 255-264
  • 55 Loffroy R, Lin M, Rao P , et al. Comparing the detectability of hepatocellular carcinoma by C-arm dual-phase cone-beam computed tomography during hepatic arteriography with conventional contrast-enhanced magnetic resonance imaging. Cardiovasc Intervent Radiol 2012; 35 (1) 97-104
  • 56 Deschamps F, Solomon SB, Thornton RH , et al. Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Intervent Radiol 2010; 33 (6) 1235-1242
  • 57 Louie JD, Kothary N, Kuo WT , et al. Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization. J Vasc Interv Radiol 2009; 20 (5) 606-613
  • 58 Floridi C, Radaelli A, Abi-Jaoudeh N , et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications. Radiol Med (Torino) 2014; 119 (7) 521-532
  • 59 Bagla S, Rholl KS, Sterling KM , et al. Utility of cone-beam CT imaging in prostatic artery embolization. J Vasc Interv Radiol 2013; 24 (11) 1603-1607
  • 60 Silverman SG, Tuncali K, Morrison PRMR. MR imaging-guided percutaneous tumor ablation. Acad Radiol 2005; 12 (9) 1100-1109
  • 61 Wyttenbach R, Corti R, Alerci M , et al. Effects of percutaneous transluminal angioplasty and endovascular brachytherapy on vascular remodeling of human femoropopliteal artery: 2 years follow-up by noninvasive magnetic resonance imaging. Eur J Vasc Endovasc Surg 2007; 34 (4) 416-423
  • 62 Kos S, Huegli R, Hofmann E , et al. MR-compatible polyetheretherketone-based guide wire assisting MR-guided stenting of iliac and supraaortic arteries in swine: feasibility study. Minim Invasive Ther Allied Technol 2009; 18 (3) 181-188
  • 63 Bracken JA, DeCrescenzo G, Komljenovic P, Lillaney PV, Fahrig R, Rowlands JA. Closed bore XMR (CBXMR) systems for aortic valve replacement: active magnetic shielding of x-ray tubes. Med Phys 2009; 36 (5) 1717-1726