Facial Plast Surg 2015; 31(05): 446-462
DOI: 10.1055/s-0035-1564717
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Computational Planning in Facial Surgery

Stefan Zachow
1   Zuse Institute Berlin (ZIB), Berlin, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. November 2015 (online)

Abstract

This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning.

 
  • References

  • 1 Powell N, Humphreys B. Proportions of the Aesthetic Face. Thieme Medical Publishers; 1984
  • 2 Steinhäuser EW. Proportionen des ästhetischen Gesichts im Vergleich zur bildenden Kunst. In: Fortschritte in der Kiefer- und Gesichtschirurgie; Thieme Medical Publishers; 1986: 1-4
  • 3 Farkas LG. Anthropometry of the Head and Face. 2nd ed. New York: Raven Press; 1994
  • 4 Ricketts RM, Bench RW, Hilgers JJ, Schulhof R. An overview of computerized cephalometrics. Am J Orthod 1972; 61 (1) 1-28
  • 5 Landes CA, Zachar R, Diehl T, Kovács AF. Introduction of a three-dimensional anthropometry of the viscerocranium. Part II: evaluating osseous and soft tissue changes following orthognathic surgery. J Craniomaxillofac Surg 2002; 30 (1) 25-34
  • 6 Bibb R, Eggbeer D, Paterson A , eds. Physical reproduction. In: Medical Modelling—The Application of Advanced Design and Rapid Prototyping Techniques in Medicine. 2nd ed. Woodhead Publishing Series in Biomaterials. New York: Elsevier Ltd.; 2015: 65-98
  • 7 Cutting C, Bookstein FL, Grayson B, Fellingham L, McCarthy JG. Three-dimensional computer-assisted design of craniofacial surgical procedures: optimization and interaction with cephalometric and CT-based models. Plast Reconstr Surg 1986; 77 (6) 877-887
  • 8 Yasuda T, Hashimoto Y, Yokoi S, Toriwaki JI. Computer system for craniofacial surgical planning based on CT images. IEEE Trans Med Imaging 1990; 9 (3) 270-280
  • 9 Altobelli DE, Kikinis R, Mulliken JB, Cline H, Lorensen W, Jolesz F. Computer-assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg 1993; 92 (4) 576-585 , discussion 586–587
  • 10 Keeve E. Visualisierungs- und Simulationsverfahren zur interaktiven Planung kraniofazialer Korrekturoperationen. PhD Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg; 1996
  • 11 Sarti A, Gori R, Lamberti C. A physically based model to simulate maxillofacial surgery from 3D CT images. Future Gener Comput Syst 1999; 15 (2) 217-221
  • 12 Koch RM . Methods for Physics Based Facial Surgery Prediction. PhD. Dissertation No. 13912, ETH Zürich; 2000
  • 13 Zachow S, Gladilin E, Zeilhofer HF, Sader R. Improved 3D osteotomy planning in cranio-maxillofacial surgery. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2001. Lecture Notes in Computer Science 2001; 2208: 473-481
  • 14 Eley KA, Watt-Smith SR, Sheerin F, Golding SJ. “Black Bone” MRI: a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur Radiol 2014; 24 (10) 2417-2426
  • 15 Zachow S, Zilske M, Hege HC. 3D reconstruction of individual anatomy from medical image data: segmentation and geometry processing. ZIB Report 07–41, 2007. Available at: https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1044
  • 16 Deuflhard P. Differential equations in technology and medicine: computational concepts, adaptive algorithms, and virtual labs. In: Capasso et al., eds. Computational Mathematics Driven by Industrial Problems, Springer, Lecture Notes in Mathematics; 2006. 1739. 69-126 . doi:10.1007/BFb0103918
  • 17 Ehlke M, Ramm H, Lamecker H, Hege HC, Zachow S. Fast generation of virtual X-ray images for reconstruction of 3D anatomy. IEEE Trans Vis Comput Graph 2013; 19 (12) 2673-2682
  • 18 Swennen GRJ, Schutyser F, Hausamen JE , eds. Three-Dimensional Cephalometry—A Color Atlas and Manual. New York: Springer; 2005. . doi:10.1007/3-540-29011-7
  • 19 Zinser MJ, Zachow S, Sailer HF. Bimaxillary ‘rotation advancement’ procedures in patients with obstructive sleep apnea: a 3-dimensional airway analysis of morphological changes. Int J Oral Maxillofac Surg 2013; 42 (5) 569-578
  • 20 Zachow S, Gladilin E, Sader R, Zeilhofer HF. Draw & Cut: Intuitive 3D Osteotomy Planning on Polygonal Bone Models. Computer Assisted Radiology and Surgery 2003. Elsevier, Int. Congress Series, 2003;1256:362–69. doi:10.1016/S0531-5131(03)00272-3
  • 21 Westermark A, Zachow S, Eppley B. Three-dimensional osteotomy planning in maxillofacial surgery including soft tissue prediction. J Craniofac Surg 2005; 16 (1) 100-104
  • 22 Zachow S, Hege HC, Deuflhard P. Computer assisted planning in cranio-maxillofacial surgery. CIT J Comput Inf Technol 2006; 14 (1) 53-64
  • 23 Bibb R, Eggbeer D, Paterson A , eds. Surgical applications case study 5. In: Medical Modelling—The Application of Advanced Design and Rapid Prototyping Techniques in Medicine. 2nd ed. Woodhead Publishing Series in Biomaterials, New York: Elsevier Ltd.; 2015: 167-172
  • 24 Nadjmi N, Mollemans W, Daelemans A, Van Hemelen G, Schutyser F, Bergé S. Virtual occlusion in planning orthognathic surgical procedures. Int J Oral Maxillofac Surg 2010; 39 (5) 457-462
  • 25 Nkenke E, Zachow S, Benz M , et al. Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dentomaxillofac Radiol 2004; 33 (4) 226-232
  • 26 Chapuis J, Zachow S, Langlotz F, Schramm A. Device for Planning Orthodontics and/or Orthognathic Surgery. 2008. . Patent WO/2008/080235, PCT/CH2007/00004, A61C 7/00 (2006.01)
  • 27 Bibb R, Eggbeer D, Paterson A , eds. Surgical applications case study 3. In: Medical Modelling—The Application of Advanced Design and Rapid Prototyping Techniques in Medicine. 2nd ed. Woodhead Publishing Series in Biomaterials, New York: Elsevier Ltd.; 2015: 145-154
  • 28 Pereira C, Ventura F, Gaspar MC, Fontes R, Mateus A. Customized implant development for maxillo-mandibular reconstruction. In: Bártolo et al., eds. Virtual and Rapid Manufacturing. Philadelphia: Taylor & Francis; 2008: 159-166
  • 29 Cornelius CP, Smolka W, Giessler GA, Wilde F, Probst FA. Patient-specific reconstruction plates are the missing link in computer-assisted mandibular reconstruction: a showcase for technical description. J Craniomaxillofac Surg 2015; 43 (5) 624-629
  • 30 Wilde F, Hanken H, Probst F, Schramm A, Heiland M, Cornelius CP. Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. Int J CARS 2015;
  • 31 Guevara Rojas G, Figl M, Schicho K , et al. Patient specific PEEK facial implants in a computer-aided planning workflow. In preparation for Journal of Oral and Maxillofacial Surgery, available at ResearchGate: http://www.researchgate.net/publication/260217023 , 2015
  • 32 Haberl H, Hell B, Zöckler MJ , et al. Technical aspects and results of surgery for craniosynostosis. Zentralbl Neurochir 2004; 65 (2) 65-74
  • 33 Zachow S, Lamecker H, Zöckler M, Haberl EJ . Computergestützte Planung zur chirurgischen Korrektur von frühkindlichen Schädelfehlbildungen (Craniosynostosen). Face 02/09, Int. Mag. of Orofacial Esthetics, Oemus Journale Leipzig, 2009:48–53
  • 34 Zachow S . Computergestützte 3D Osteotomieplanung unter Berücksichtigung der räumlichen Weichgewebeanordnung (in German). (English translation: Computer assisted osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue changes.) PhD Dissertation, TU Berlin, Germany; 2005
  • 35 Mollemans W, Schutyser F, Nadjmi N, Maes F, Suetens P. Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med Image Anal 2007; 11 (3) 282-301
  • 36 Swennen GR, Mollemans W, Schutyser F. Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging. J Oral Maxillofac Surg 2009; 67 (10) 2080-2092
  • 37 Zachow S, Weiser M, Hege HC, Deuflhard P. Soft tissue prediction in computer-assisted maxillofacial surgery planning. In: Payan, ed. Biomechanics Applied to Computer-Assisted Surgery. Ontario, Canada: Research Signpost Publisher; 2005: 277-298
  • 38 Deuflhard P, Weiser M, Zachow S. Mathematics in facial surgery. AMS Notices 2006; 53 (9) 1012-1016
  • 39 Baek KW, Deibel W, Marinov D , et al. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser. Lasers Surg Med 2015; 47 (5) 426-432
  • 40 Hennet P. Piezoelectric bone surgery: A review of the literature and potential applications in veterinary oromaxillofacial surgery. Front Vet Sci 2015; . Available at: http://journal.frontiersin.org/article/10.3389/fvets.2015.00008/full
  • 41 Hernández-Alfaro F, Guijarro-Martínez R. New protocol for three-dimensional surgical planning and CAD/CAM splint generation in orthognathic surgery: an in vitro and in vivo study. Int J Oral Maxillofac Surg 2013; 42 (12) 1547-1556
  • 42 Zinser MJ, Sailer HF, Ritter L, Braumann B, Maegele M, Zöller JE. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning. J Oral Maxillofac Surg 2013; 71 (12) 2151.e1-2151.e21
  • 43 Zachow S, Kubiack K, Malinowski J, Lamecker H, Essig H, Gellrich NC. Modellgestützte chirurgische Rekonstruktion komplexer Mittelgesichtsfrakturen. Proc. BMT Biomed Tech 2010; 55 (Suppl. 01) 107-108
  • 44 Lamecker H . Variational and Statistical Shape Modeling for 3D Geometry Reconstruction. PhD Dissertation, FU Berlin, Germany; 2008
  • 45 Lamecker H, Zachow S, Statistical shape modeling of musculoskeletal structures and its applications, Lecture Notes in Computational Vision and Biomechanics, Vol. 23. In: Zheng G, Li S. eds. Computational Radiology for Orthopaedic Interventions. New York: Springer; 2016: 1-21
  • 46 Lamecker H, Kamer L, Wittmers A , et al. A method for the three-dimensional statistical shape analysis of the bony orbit. In: Freysinger et al., eds. Computer Aided Surgery around the Head. Berlin: Pro Business Verlag; 2007: 94-97
  • 47 Zachow S, Lamecker H, Elsholtz B, Stiller M. Reconstruction of mandibular dysplasia using a statistical 3D shape model. In: Lemke et al, eds. Computer Assisted Radiology and Surgery, Int. Congress Series (1281), New York: Elsevier; 2005: 1238-1243
  • 48 Lamecker H, Zachow S, Wittmers A , et al. Automatic segmentation of mandibles in low-dose CT-data. Int J CARS 2006; 1 (1) 393-395
  • 49 Hochfeld M, Lamecker H, Thomale UW, Schulz M, Zachow S, Haberl H. Frame-based cranial reconstruction. J Neurosurg Pediatr 2014; 13 (3) 319-323
  • 50 Grewe M, Zachow S . ZIB projects: Camera Facialis ( http://www.zib.de/projects/camera-facialis ) and Facial Morphology ( http://www.zib.de/projects/facial-morphology ), 2015
  • 51 Bibb R, Eggbeer D, Paterson A , eds. Maxillofacial rehabilitation case study 6 and 7. In: Medical Modelling—The Application of Advanced Design and Rapid Prototyping Techniques in Medicine. 2nd ed. Woodhead Publishing Series in Biomaterials, New York: Elsevier Ltd.; 2015: 256-277
  • 52 Lubkoll L, Schiela A, Weiser M. An optimal control problem in polyconvex hyperelasticity. SIAM J Contr Optim 2014; 52 (3) 1403-1422
  • 53 Ekman P, Friesen WV. The Facial Action Coding System: A Technique for the Measurement of Facial Movement. San Francisco, CA: Consulting Psychologists Press; 1978
  • 54 Gladilin E, Zachow S, Deuflhard P, Hege HC. Realistic prediction of individual facial emotion expressions for craniofacial surgery simulations. Proc SPIE 2003; 5029: 520-527
  • 55 Gladilin E, Zachow S, Deuflhard P, Hege HC. Anatomy- and physics-based facial animation for craniofacial surgery simulations. Med Biol Eng Comput 2004; 42 (2) 167-170
  • 56 Zachow S, Gladilin E, Hege HC, Deuflhard P. Towards patient specific, anatomy based simulation of facial mimics for surgical nerve rehabilitation. In: Lemke et al., eds. Computer Assisted Radiology and Surgery 2002. New York: Springer; 2005: 3-6 . doi:10.1007/978-3-642-56168-9_1
  • 57 Hermanussen M , Ed. Auxology—Studying Human Growth and Development. Stuttgart, Germany: Schweizerbart Science Publishers; 2013
  • 58 Grewe CM, Lamecker H, Zachow S. Landmark-based statistical shape analysis. In: Hermanussen M, ed. Auxology—Studying Human Growth and Development. Stuttgart, Germany: Schweizerbart Science Publishers; 2013: 199-201
  • 59 Hayward R, Jones B, Dunaway D, Evans R , eds. The Clinical Management of Craniosynostosis. Vol. 163 of Clinics in Developmental Medicine, London: MacKeith Press; 2004
  • 60 Klein C, Howaldt HP. Mandibular distraction osteogenesis as first step in the early treatment of severe dysgnathia in childhood. J Orofac Orthop 1996; 57 (1) 46-54
  • 61 Magnenat-Thalmann N, Kalra P, Lévêque JL, Bazin R, Batisse D, Querleux B. A computational skin model: fold and wrinkle formation. IEEE Trans Inf Technol Biomed 2002; 6 (4) 317-323
  • 62 Kuwazuru O, Saothong J, Yoshikawa N. Mechanical approach to aging and wrinkling of human facial skin based on the multistage buckling theory. Med Eng Phys 2008; 30 (4) 516-522
  • 63 Flynn C, McCormack BAO. Simulating the wrinkling and aging of skin with a multi-layer finite element model. J Biomech 2010; 43 (3) 442-448
  • 64 Nadjmi N, Defrancq E, Mollemans W, Hemelen GV, Bergé S. Quantitative validation of a computer-aided maxillofacial planning system, focusing on soft tissue deformations. Ann Maxillofac Surg 2014; 4 (2) 171-175