Semin Respir Crit Care Med 2015; 36(06): 890-898
DOI: 10.1055/s-0035-1564874
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Hemodynamic Monitoring for the Evaluation and Treatment of Shock: What Is the Current State of the Art?

Eric M. Suess
1   Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Michael R. Pinsky
1   Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
23 November 2015 (online)

Abstract

Hemodynamic monitoring has become a fundamental and ubiquitous, if not defining, aspect of critical care medicine practice. Modern monitoring techniques have changed significantly over the past few years and are now able to rapidly identify shock states earlier, define the etiology, and monitor the response to therapies. Many of these techniques are now minimally invasive or noninvasive. Basic hemodynamic monitoring and evaluation usually includes a focused physical examination and static hemodynamic vital signs: temperature, heart rate, respiratory rate, mean arterial pressure, and arterial hemoglobin oxygen saturation, typically measured with pulse photoplethysmography. When available, measurement of urinary output is often included. Advanced hemodynamic monitoring incorporates both noninvasive and invasive continuous hemodynamic monitoring. Noninvasive ultrasound has emerged as a fundamental hemodynamic evaluation tool and its use is now rapidly increasing. Invasive monitoring from arterial and central venous catheters, and occasionally pulmonary artery catheters, provides measurement of arterial pressure, intracardiac filling pressures, arterial and venous blood gases, and cardiac index. Minimally invasive and noninvasive measure of arterial pressure and cardiac output are also possible and often remain as accurate as invasive measures. Importantly, such advanced monitoring provides the foundation for goal-directed therapies for the treatment of shock. When coupled with functional hemodynamic monitoring analyses, these measures markedly extend the diagnostic and therapeutic potential of all monitoring modalities by defining preload reserve, vasomotor tone, cardiac performance, and tissue perfusion.

 
  • References

  • 1 Pinsky MR. Hemodynamic evaluation and monitoring in the ICU. Chest 2007; 132 (6) 2020-2029
  • 2 Grissom CK, Morris AH, Lanken PN , et al; National Institutes of Health/National Heart, Lung and Blood Institute Acute Respiratory Distress. Association of physical examination with pulmonary artery catheter parameters in acute lung injury. Crit Care Med 2009; 37 (10) 2720-2726
  • 3 Eisenberg PR, Jaffe AS, Schuster DP. Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med 1984; 12 (7) 549-553
  • 4 Connors Jr AF, McCaffree DR, Gray BA. Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med 1983; 308 (5) 263-267
  • 5 Thomas JT, Kelly RF, Thomas SJ , et al. Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure. Am J Med 2002; 112 (6) 437-445
  • 6 Schriger DL, Baraff LJ. Capillary refill—is it a useful predictor of hypovolemic states?. Ann Emerg Med 1991; 20 (6) 601-605
  • 7 Rady MY, Rivers EP, Nowak RM. Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med 1996; 14 (2) 218-225
  • 8 Fuller BM, Dellinger RP. Lactate as a hemodynamic marker in the critically ill. Curr Opin Crit Care 2012; 18 (3) 267-272
  • 9 Casserly B, Phillips GS, Schorr C , et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med 2015; 43 (3) 567-573
  • 10 Pinsky MR. Functional hemodynamic monitoring. Crit Care Clin 2015; 31 (1) 89-111
  • 11 Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 1970; 283 (9) 447-451
  • 12 Whitener S, Konoske R, Mark JB. Pulmonary artery catheter. Best Pract Res Clin Anaesthesiol 2014; 28 (4) 323-335
  • 13 Connors Jr AF, Speroff T, Dawson NV , et al; SUPPORT Investigators. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996; 276 (11) 889-897
  • 14 Mimoz O, Rauss A, Rekik N, Brun-Buisson C, Lemaire F, Brochard L. Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter-prompted changes in therapy. Crit Care Med 1994; 22 (4) 573-579
  • 15 Pinsky MR, Vincent J-L. Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 2005; 33 (5) 1119-1122
  • 16 Vincent JL. A reappraisal for the use of pulmonary artery catheters. Crit Care 2006; 10 (Suppl. 03) S1-S2
  • 17 Hadian M, Pinsky MR. Evidence-based review of the use of the pulmonary artery catheter: impact data and complications. Crit Care 2006; 10 (Suppl. 03) S8
  • 18 Wilson J, Woods I, Fawcett J , et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 1999; 318 (7191) 1099-1103
  • 19 Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 1993; 270 (22) 2699-2707
  • 20 Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988; 94 (6) 1176-1186
  • 21 Gattinoni L, Brazzi L, Pelosi P , et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 1995; 333 (16) 1025-1032
  • 22 Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 1994; 330 (24) 1717-1722
  • 23 Pearse RM, Harrison DA, MacDonald N , et al; OPTIMISE Study Group. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 2014; 311 (21) 2181-2190
  • 24 Yu M, Levy MM, Smith P, Takiguchi SA, Miyasaki A, Myers SA. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med 1993; 21 (6) 830-838
  • 25 Tuchschmidt J, Fried J, Astiz M, Rackow E. Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 1992; 102 (1) 216-220
  • 26 Sandham JD, Hull RD, Brant RF , et al; Canadian Critical Care Clinical Trials Group. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 2003; 348 (1) 5-14
  • 27 Richard C, Warszawski J, Anguel N , et al; French Pulmonary Artery Catheter Study Group. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2003; 290 (20) 2713-2720
  • 28 Binanay C, Califf RM, Hasselblad V , et al; ESCAPE Investigators and ESCAPE Study Coordinators. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 2005; 294 (13) 1625-1633
  • 29 Harvey S, Harrison DA, Singer M , et al; PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 2005; 366 (9484) 472-477
  • 30 Dellinger RP, Levy MM, Rhodes A , et al; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41 (2) 580-637
  • 31 Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 2004; 30 (8) 1572-1578
  • 32 Rivers E, Nguyen B, Havstad S , et al; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345 (19) 1368-1377
  • 33 Monnet X, Teboul J-L. Assessment of volume responsiveness during mechanical ventilation: recent advances. Crit Care 2013; 17 (2) 217
  • 34 Monnet X, Teboul J-L. Minimally invasive monitoring. Crit Care Clin 2015; 31 (1) 25-42
  • 35 Gershengorn HB, Wunsch H. Understanding changes in established practice: pulmonary artery catheter use in critically ill patients. Crit Care Med 2013; 41 (12) 2667-2676
  • 36 Bose EL, Hravnak M, Pinsky MR. The interface between monitoring and physiology at the bedside. Crit Care Clin 2015; 31 (1) 1-24
  • 37 Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettilä V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med 2005; 31 (8) 1066-1071
  • 38 Lehman LW, Saeed M, Talmor D, Mark R, Malhotra A. Methods of blood pressure measurement in the ICU. Crit Care Med 2013; 41 (1) 34-40
  • 39 Ochagavía A, Baigorri F, Mesquida J , et al; Grupo de Trabajo de Cuidados Intensivos Cardiológicos y RCP de la SEMICYUC. Monitorización hemodinámica en el paciente crítico. Recomendaciones del Grupo de Trabajo de Cuidados Intensivos Cardiológicos y RCP de la Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias [in Spanish]. Med Intensiva 2014; 38 (3) 154-169
  • 40 LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 2000; 28 (8) 2729-2732
  • 41 Asfar P, Meziani F, Hamel J-F , et al; SEPSISPAM Investigators. High versus low blood-pressure target in patients with septic shock. N Engl J Med 2014; 370 (17) 1583-1593
  • 42 Kellum JA, Pinsky MR. Use of vasopressor agents in critically ill patients. Curr Opin Crit Care 2002; 8 (3) 236-241
  • 43 Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134 (1) 172-178
  • 44 Kumar A, Anel R, Bunnell E , et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 2004; 32 (3) 691-699
  • 45 Marik PE, Monnet X, Teboul J-L. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 2011; 1 (1) 1-9
  • 46 Michard F, Boussat S, Chemla D , et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000; 162 (1) 134-138
  • 47 Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 2013; 41 (7) 1774-1781
  • 48 Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 2002; 121 (6) 2000-2008
  • 49 Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 2011; 39 (2) 259-265
  • 50 Micek ST, McEvoy C, McKenzie M, Hampton N, Doherty JA, Kollef MH. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Crit Care 2013; 17 (5) R246
  • 51 Murphy CV, Schramm GE, Doherty JA , et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest 2009; 136 (1) 102-109
  • 52 Wiedemann HP, Wheeler AP, Bernard GR , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354 (24) 2564-2575
  • 53 Vincent J-L, Sakr Y, Sprung CL , et al; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34 (2) 344-353
  • 54 Waechter J, Kumar A, Lapinsky SE , et al; Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Interaction between fluids and vasoactive agents on mortality in septic shock : a multi-center, observational study. Crit Care Med 2014; 42 (10) 2158-2168
  • 55 Morimatsu H, Singh K, Uchino S, Bellomo R, Hart G. Early and exclusive use of norepinephrine in septic shock. Resuscitation 2004; 62 (2) 249-254
  • 56 Beck V, Chateau D, Bryson GL , et al; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Crit Care 2014; 18 (3) R97
  • 57 Osman D, Ridel C, Ray P , et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 2007; 35 (1) 64-68
  • 58 Pinsky MR. Functional haemodynamic monitoring. Curr Opin Crit Care 2014; 20 (3) 288-293
  • 59 Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 2000; 4 (5) 282-289
  • 60 Hadian M, Pinsky MR. Functional hemodynamic monitoring. Curr Opin Crit Care 2007; 13 (3) 318-323
  • 61 Pinsky MR, Kellum JA, Brochard L. Ten recent advances that could not have come about without applying physiology. Intensive Care Med (in press). doi: 10.1007/s00134-015-3746-9
  • 62 Cannesson M, Aboy M, Hofer CK, Rehman M. Pulse pressure variation: where are we today?. J Clin Monit Comput 2011; 25 (1) 45-56
  • 63 Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 2009; 37 (9) 2642-2647
  • 64 Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 2004; 30 (9) 1834-1837
  • 65 Bodson L, Vieillard-Baron A. Respiratory variation in inferior vena cava diameter: surrogate of central venous pressure or parameter of fluid responsiveness? Let the physiology reply. Crit Care 2012; 16 (6) 181
  • 66 Vieillard-Baron A, Chergui K, Rabiller A , et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 2004; 30 (9) 1734-1739
  • 67 Guarracino F, Ferro B, Forfori F, Bertini P, Magliacano L, Pinsky MR. Jugular vein distensibility predicts fluid responsiveness in septic patients. Crit Care 2014; 18 (6) 647
  • 68 Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest 2013; 143 (2) 364-370
  • 69 The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 70 De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 2005; 31 (4) 517-523
  • 71 Mesquida J, Kim HK, Pinsky MR. Effect of tidal volume, intrathoracic pressure, and cardiac contractility on variations in pulse pressure, stroke volume, and intrathoracic blood volume. Intensive Care Med 2011; 37 (10) 1672-1679
  • 72 Richard J-C, Bayle F, Bourdin G , et al. Preload dependence indices to titrate volume expansion during septic shock: a randomized controlled trial. Crit Care 2015; 19 (1) 5
  • 73 Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul J-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 2009; 37 (3) 951-956
  • 74 Monnet X, Bleibtreu A, Ferré A , et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med 2012; 40 (1) 152-157
  • 75 Monnet X, Teboul JL. Passive leg raising. Intensive Care Med 2008; 34 (4) 659-663
  • 76 Biais M, Vidil L, Sarrabay P, Cottenceau V, Revel P, Sztark F. Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Crit Care 2009; 13 (6) R195
  • 77 Jabot J, Teboul JL, Richard C, Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med 2009; 35 (1) 85-90
  • 78 Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 2002; 121 (4) 1245-1252
  • 79 Cavallaro F, Sandroni C, Marano C , et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med 2010; 36 (9) 1475-1483
  • 80 Monnet X, Letierce A, Hamzaoui O , et al. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine. Crit Care Med 2011; 39 (6) 1394-1399
  • 81 Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock?. Intensive Care Med 2012; 38 (3) 422-428
  • 82 Chemla D, Hébert JL, Coirault C , et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 1998; 274 (2, Pt 2) H500-H505
  • 83 Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care 2011; 15 (1) R15
  • 84 Monnet X, Jabot J, Maizel J, Richard C, Teboul J-L. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med 2011; 39 (4) 689-694
  • 85 Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock-part I: physiology. Crit Care Med 2013; 41 (1) 255-262
  • 86 Funk DJ, Jacobsohn E, Kumar A. Role of the venous return in critical illness and shock: part II-shock and mechanical ventilation. Crit Care Med 2013; 41 (2) 573-579
  • 87 De Backer D, Creteur J, Dubois M-J, Sakr Y, Vincent J-L. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 2004; 147 (1) 91-99
  • 88 Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013; 369 (18) 1726-1734
  • 89 Vincent JL, De Backer D. Microvascular dysfunction as a cause of organ dysfunction in severe sepsis. Crit Care 2005; 9 (4) (Suppl. 04) S9-S12
  • 90 van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med 2013; 39 (6) 1034-1039
  • 91 Vincent JL, Rhodes A, Perel A , et al. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care 2011; 15 (4) 229
  • 92 Gómez H, Torres A, Polanco P , et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O(2) saturation response. Intensive Care Med 2008; 34 (9) 1600-1607
  • 93 Mesquida J, Gruartmoner G, Espinal C. Skeletal muscle oxygen saturation (StO2) measured by near-infrared spectroscopy in the critically ill patients. Biomed Res Int 2013; 2013: 502194
  • 94 Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med 2007; 33 (9) 1549-1556
  • 95 Mesquida J, Espinal C, Gruartmoner G , et al. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Med 2012; 38 (4) 592-597
  • 96 Neto AS, Pereira VGM, Manetta JA, Espósito DC, Schultz MJ. Association between static and dynamic thenar near-infrared spectroscopy and mortality in patients with sepsis: a systematic review and meta-analysis. J Trauma Acute Care Surg 2014; 76 (1) 226-233
  • 97 Guyette FX, Gomez H, Suffoletto B , et al. Prehospital dynamic tissue oxygen saturation response predicts in-hospital lifesaving interventions in trauma patients. J Trauma Acute Care Surg 2012; 72 (4) 930-935
  • 98 Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: Clinical imaging of the sublingual microcirculation in the critically ill—where do we stand?. Crit Care 2012; 16 (3) 224
  • 99 Vellinga NAR, Boerma EC, Koopmans M , et al; microSOAP Study Group. International study on microcirculatory shock occurrence in acutely ill patients. Crit Care Med 2015; 43 (1) 48-56
  • 100 Trzeciak S, Glaspey LJ, Dellinger RP , et al. Randomized controlled trial of inhaled nitric oxide for the treatment of microcirculatory dysfunction in patients with sepsis. Crit Care Med 2014; 42 (12) 2482-2492
  • 101 Hernandez G, Bruhn A, Luengo C , et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med 2013; 39 (8) 1435-1443
  • 102 Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 2011; 112 (6) 1392-1402
  • 103 Peake SL, Delaney A, Bailey M , et al; ARISE Investigators; ANZICS Clinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014; 371 (16) 1496-1506
  • 104 Yealy DM, Kellum JA, Huang DT , et al; ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370 (18) 1683-1693