Facial Plast Surg 2015; 31(05): 474-490
DOI: 10.1055/s-0035-1565010
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Computer-Designed Splints for Surgical Transfer of 3D Orthognathic Planning

Max Zinser
1   Department of Plastic Surgery, Klinikum Koln-Merheim, University Witten-Herdecke, Köln, Germany
2   Department of Craniomaxillofacial Surgery, University Cologne, Köln, Germany
,
Joachim Zoeller
2   Department of Craniomaxillofacial Surgery, University Cologne, Köln, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
18 November 2015 (online)

Abstract

Advances in computers and imaging have permitted the adoption of three-dimensional (3D) planning protocols in orthognathic surgery, which may allow a paradigm shift when the computer-assisted planning can be transferred properly. The purpose of this investigation was to introduce an innovative clinical protocol using computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints for surgical transfer of 3D orthognathic planning compared with the classic technique using arbitrary occlusal splints. The clinical protocols consisted of computed tomography (CT) or cone-beam CT (CBCT) maxillofacial imaging, bone segmentation, 3D diagnosis, computer-assisted surgical treatment planning, and CAD/CAM surgical splints (group A) and manufacture of arbitrary occlusal splints (group B) for intraoperative surgical planning transfer. The observed patients underwent bimaxillary osteotomies and, if necessary, an additional genioplasty. Both techniques were evaluated by applying 13 hard tissue parameters to compare the 3D orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry. The CAD/CAM splints showed significant better precision for the maxilla (ΔT < 0.23 mm) and mandible (ΔT < 0.33 mm) compared with a maxillary deviation of 1.3 mm and a mandibular deviation of 1.8 mm when using the arbitrary splints. Computer-assisted diagnosis and preoperative surgical planning provide clinicians with valuable tools and allow 3D imagination. CAD/CAM splints provide a reliable, innovative, and precise approach for the transfer of 3D orthognathic planning, which is more precise compared with the conventional arbitrary occlusal splints.

 
  • References

  • 1 Cevidanes LH, Bailey LJ, Tucker Jr GR , et al. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol 2005; 34 (6) 369-375
  • 2 Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofacial Orthop 2006; 129 (5) 611-618
  • 3 Cevidanes LH, Bailey LJ, Tucker SF , et al. Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery. Am J Orthod Dentofacial Orthop 2007; 131 (1) 44-50
  • 4 Macchi A, Carrafiello G, Cacciafesta V, Norcini A. Three-dimensional digital modeling and setup. Am J Orthod Dentofacial Orthop 2006; 129 (5) 605-610
  • 5 Whetten JL, Williamson PC, Heo G, Varnhagen C, Major PW. Variations in orthodontic treatment planning decisions of Class II patients between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofacial Orthop 2006; 130 (4) 485-491
  • 6 Olszewski R, Reychler H. Limitations of orthognathic model surgery: theoretical and practical implications [in French]. Rev Stomatol Chir Maxillofac 2004; 105 (3) 165-169
  • 7 Yosano A, Yamamoto M, Shouno T , et al. Model surgery technique for Le Fort I osteotomy—alteration in occlusal plane associated with upward transposition of posterior maxilla. Bull Tokyo Dent Coll 2005; 46 (3) 67-78
  • 8 Kärcher H. Three-dimensional craniofacial surgery: transfer from a three-dimensional model (Endoplan) to clinical surgery: a new technique (Graz). J Craniomaxillofac Surg 1992; 20 (3) 125-131
  • 9 Santler G. 3-D COSMOS: a new 3-D model based computerised operation simulation and navigation system. J Craniomaxillofac Surg 2000; 28 (5) 287-293
  • 10 Krenkel C, Lixl G. Model surgical apparatus for planning and simulation of maxillary and mandibular osteotomies [in German]. Zahnarztl Prax 1991; 42: 471-473
  • 11 Somsiri ST. A double-splint procedure in preparation for simultaneous surgical correction of the position of the maxilla and mandible [in German]. Fortschr Kieferorthop 1987; 48 (1) 59-65
  • 12 Steinhäuser E. Grundlagen zur Behandlungsplanung und Behandlungsdurchführung. In: Steinhäuser E, Rudzki-Janson IM, , eds. Kieferorthopädische Chirurgie; Eine Interdisziplinäre Augabe. Berlin, Germany: Quintessenz; 1988
  • 13 Ellis III E. Accuracy of model surgery: evaluation of an old technique and introduction of a new one. J Oral Maxillofac Surg 1990; 48 (11) 1161-1167
  • 14 Zinser MJ, Zachow S, Sailer HF. Bimaxillary ‘rotation advancement’ procedures in patients with obstructive sleep apnea: a 3-dimensional airway analysis of morphological changes. Int J Oral Maxillofac Surg 2013; 42 (5) 569-578
  • 15 Marmulla R, Mühling J. Computer-assisted condyle positioning in orthognathic surgery. J Oral Maxillofac Surg 2007; 65 (10) 1963-1968
  • 16 Zinser MJ, Mischkowski RA, Sailer HF, Zöller JE. Computer-assisted orthognathic surgery: feasibility study using multiple CAD/CAM surgical splints. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113 (5) 673-687
  • 17 Zinser MJ, Sailer HF, Ritter L, Braumann B, Maegele M, Zöller JE. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning. J Oral Maxillofac Surg 2013; 71 (12) 2151.e1-2151.e21
  • 18 Zinser MJ, Mischkowski RA, Dreiseidler T, Thamm OC, Rothamel D, Zöller JE. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display. Br J Oral Maxillofac Surg 2013; 51 (8) 827-833
  • 19 Gateno J, Xia J, Teichgraeber JF, Rosen A, Hultgren B, Vadnais T. The precision of computer-generated surgical splints. J Oral Maxillofac Surg 2003; 61 (7) 814-817
  • 20 Metzger M-C, Hohlweg-Majert B, Schwarz U, Teschner M, Hammer B, Schmelzeisen R. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105 (2) e1-e7
  • 21 Aboul-Hosn Centenero S, Hernandez-Alfaro F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results—Our experience in 16 cases. J Craniomaxillofac Surg 2012; 40 (2) 162-168
  • 22 Polley JW, Figueroa AA. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery. J Oral Maxillofac Surg 2013; 71 (5) 911-920
  • 23 Wagner A, Rasse M, Millesi W, Ewers R. Virtual reality for orthognathic surgery: the augmented reality environment concept. J Oral Maxillofac Surg 1997; 55 (5) 456-462 , discussion 462–463
  • 24 Zachow S, Hege HC, Deuflhard P. Computer assisted planning in cranio-maxillofacial surgery. J Comput Inf Technol CIT 2006; 14 (1) 53-64
  • 25 Westermark A, Zachow S, Eppley BL. Three-dimensional osteotomy planning in maxillofacial surgery including soft tissue prediction. J Craniofac Surg 2005; 16 (1) 100-104
  • 26 Heiland M, Habermann CR, Schmelzle R. Indications and limitations of intraoperative navigation in maxillofacial surgery. J Oral Maxillofac Surg 2004; 62 (9) 1059-1063
  • 27 Mischkowski RA, Zinser MJ, Ritter L, Neugebauer J, Keeve E, Zöller JE. Intraoperative navigation in the maxillofacial area based on 3D imaging obtained by a cone-beam device. Int J Oral Maxillofac Surg 2007; 36 (8) 687-694
  • 28 Mischkowski RA, Zinser MJ, Kübler AC, Krug B, Seifert U, Zöller JE. Application of an augmented reality tool for maxillary positioning in orthognathic surgery - a feasibility study. J Craniomaxillofac Surg 2006; 34 (8) 478-483
  • 29 Zinser M. Computer assisted secondary reconstruction of maxillofacial deformity. J Oral Maxillofac Surg 2006; 64 (9) 44
  • 30 Wagner A, Ploder O, Enislidis G, Truppe M, Ewers R. Image-guided surgery. Int J Oral Maxillofac Surg 1996; 25 (2) 147-151
  • 31 Bell RB. Computer planning and intraoperative navigation in orthognathic surgery. J Oral Maxillofac Surg 2011; 69 (3) 592-605
  • 32 Chapuis J, Schramm A, Pappas I , et al. A new system for computer-aided preoperative planning and intraoperative navigation during corrective jaw surgery. IEEE Trans Inf Technol Biomed 2007; 11 (3) 274-287
  • 33 Zachow S . Computer Assisted Osteotomy Planning in Cranio-Maxillofacial Surgery under Consideration of Facial Soft Tissue Changes, Doctoral Thesis (in German), Technische Universität Berlin, 2005
  • 34 Marchetti C, Bianchi A, Bassi M, Gori R, Lamberti C, Sarti A. Mathematical modeling and numerical simulation in maxillo-facial virtual surgery (VISU). J Craniofac Surg 2006; 17 (4) 661-667 , discussion 668
  • 35 Marchetti C, Bianchi A, Bassi M, Gori R, Lamberti C, Sarti A. Mathematical modeling and numerical simulation in maxillofacial virtual surgery. J Craniofac Surg 2007; 18 (4) 826-832
  • 36 Zhao L, Patel PK, Cohen M. Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery. Arch Plast Surg 2012; 39 (4) 309-316
  • 37 Xia JJ, Gateno J, Teichgraeber JF. New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. J Oral Maxillofac Surg 2009; 67 (10) 2093-2106
  • 38 Severt TR, Proffit WR. The prevalence of facial asymmetry in the dentofacial deformities population at the University of North Carolina. Int J Adult Orthodon Orthognath Surg 1997; 12 (3) 171-176
  • 39 Schneider M, Tzscharnke O, Pilling E, Lauer G, Eckelt U. Comparison of the predicted surgical results following virtual planning with those actually achieved following bimaxillary operation of dysgnathia. J Craniomaxillofac Surg 2005; 33 (1) 8-12
  • 40 Ellis III E, Tharanon W, Gambrell K. Accuracy of face-bow transfer: effect on surgical prediction and postsurgical result. J Oral Maxillofac Surg 1992; 50 (6) 562-567
  • 41 Swennen GRJ, Mollemans W, Schutyser F. Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging. J Oral Maxillofac Surg 2009; 67 (10) 2080-2092
  • 42 Zizelmann C, Hammer B, Gellrich NC, Schwestka-Polly R, Rana M, Bucher P. An evaluation of face-bow transfer for the planning of orthognathic surgery. J Oral Maxillofac Surg 2012; 70 (8) 1944-1950
  • 43 Gateno J, Forrest KK, Camp B. A comparison of 3 methods of face-bow transfer recording: implications for orthognathic surgery. J Oral Maxillofac Surg 2001; 59 (6) 635-640 , discussion 640–641
  • 44 Gateno J, Xia J, Teichgraeber JF, Rosen A. A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg 2003; 61 (2) 222-227
  • 45 Cascone P, Di Paolo C, Leonardi R, Pedullà E. Temporomandibular disorders and orthognathic surgery. J Craniofac Surg 2008; 19 (3) 687-692
  • 46 Bill JS, Würzler K, Reinhart E, Böhm H, Eulert S, Reuther JF. Bimaxillary osteotomy with and without condylar positioning—a 1981-2002 long-term study [in German]. Mund Kiefer Gesichtschir 2003; 7 (6) 345-350
  • 47 Gil JN, Campos FE, Claus JD, Gil LF, Marin C, de Freitas SF. Medial canthal region as an external reference point in orthognathic surgery. J Oral Maxillofac Surg 2011; 69 (2) 352-355
  • 48 Kretschmer WB, Zoder W, Baciut G, Bacuit M, Wangerin K. Accuracy of maxillary positioning in bimaxillary surgery. Br J Oral Maxillofac Surg 2009; 47 (6) 446-449
  • 49 Donatsky O, Bjørn-Jørgensen J, Holmqvist-Larsen M, Hillerup S. Computerized cephalometric evaluation of orthognathic surgical precision and stability in relation to maxillary superior repositioning combined with mandibular advancement or setback. J Oral Maxillofac Surg 1997; 55 (10) 1071-1079 , discussion 1079–1080
  • 50 Harris KP, Weinberg M, Sadowsky C. Combined orthodontic-orthognathic surgical treatment of a Class II, Division I malocclusion. Am J Orthod Dentofacial Orthop 1997; 111 (6) 640-645
  • 51 Hsu SS, Gateno J, Bell RB , et al. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg 2013; 71 (1) 128-142
  • 52 De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 2009; 38 (6) 609-625
  • 53 Maal TJJ, Plooij JM, Rangel FA, Mollemans W, Schutyser FA, Bergé SJ. The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg 2008; 37 (7) 641-646
  • 54 Swennen GR, Mommaerts MY, Abeloos J , et al. The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model. J Craniofac Surg 2007; 18 (3) 533-539
  • 55 Xia J, Wang D, Samman N, Yeung RW, Tideman H. Computer-assisted three-dimensional surgical planning and simulation: 3D color facial model generation. Int J Oral Maxillofac Surg 2000; 29 (1) 2-10
  • 56 Xia JJ, Phillips CV, Gateno J , et al. Cost-effectiveness analysis for computer-aided surgical simulation in complex cranio-maxillofacial surgery. J Oral Maxillofac Surg 2006; 64 (12) 1780-1784