Semin Neurol 2016; 36(03): 233-243
DOI: 10.1055/s-0036-1581993
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Sporadic Cerebral Amyloid Angiopathy: Pathophysiology, Neuroimaging Features, and Clinical Implications

Gregoire Boulouis
1   Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts
,
Andreas Charidimou
1   Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts
,
Steven M. Greenberg
1   Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
23 May 2016 (online)

Abstract

Sporadic cerebral amyloid angiopathy is a small vessel disorder defined pathologically by progressive amyloid deposition in the walls of cortical and leptomeningeal vessels resulting from disruption of a complex balance between production, circulation, and clearance of amyloid-β peptide (Aβ) in the brain. Cerebral amyloid angiopathy is a major cause of lobar symptomatic intracerebral hemorrhage, transient focal neurologic episodes, and a key contributor to vascular cognitive impairment. The mechanisms and consequences of amyloid-β deposition at the pathological level and its neuroimaging manifestations, clinical consequences, and implications for patient care are addressed in this review.

 
  • References

  • 1 Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011; 70 (6) 871-880
  • 2 Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke 2015; 17 (1) 17-30
  • 3 Yamada M, Naiki H. Cerebral amyloid angiopathy. Prog Mol Biol Transl Sci 2012; 107: 41-78
  • 4 Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 2011; 7 (1) 1-9
  • 5 Charidimou A, Fox Z, Werring DJ, Song M. Cerebral amyloid angiopathy research: on the verge of an explosion?. Int J Stroke 2015; 10 (5) E47-E48
  • 6 Oppenheim G. Uber “drusige Nekrosen” in der Grosshirnrinde. Neurol Centralbl 1909; 28: 410-413
  • 7 Tanskanen M, Mäkelä M, Myllykangas L , et al. Prevalence and severity of cerebral amyloid angiopathy: a population-based study on very elderly Finns (Vantaa 85+). Neuropathol Appl Neurobiol 2012; 38 (4) 329-336
  • 8 Boyle PA, Yu L, Nag S , et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 2015; 85 (22) 1930-1936
  • 9 Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer's disease and other cerebrovascular neuropathologic changes. Neurobiol Aging 2015; 36 (10) 2702-2708
  • 10 Attems J, Quass M, Jellinger KA, Lintner F. Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 2007; 257 (1–2) 49-55
  • 11 Ellis RJ, Olichney JM, Thal LJ , et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV. Neurology 1996; 46 (6) 1592-1596
  • 12 Esiri MM, Wilcock GK. Cerebral amyloid angiopathy in dementia and old age. J Neurol Neurosurg Psychiatry 1986; 49 (11) 1221-1226
  • 13 Akoudad S, Portegies MLP, Koudstaal PJ , et al. Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam study. Circulation 2015; 132 (6) 509-516
  • 14 Weller RO, Subash M, Preston SD, Mazanti I, Carare RO. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol 2008; 18 (2) 253-266
  • 15 Tarasoff-Conway JM, Carare RO, Osorio RS , et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015; 11 (8) 457-470
  • 16 Kanekiyo T, Liu C-C, Shinohara M, Li J, Bu G. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β. J Neurosci 2012; 32 (46) 16458-16465
  • 17 Shibata M, Yamada S, Kumar SR , et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000; 106 (12) 1489-1499
  • 18 Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease. Am J Pathol 1998; 153 (3) 725-733
  • 19 Hawkes CA, Gatherer M, Sharp MM , et al. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-β from the mouse brain. Aging Cell 2013; 12 (2) 224-236
  • 20 Suzuki N, Iwatsubo T, Odaka A, Ishibashi Y, Kitada C, Ihara Y. High tissue content of soluble beta 1-40 is linked to cerebral amyloid angiopathy. Am J Pathol 1994; 145 (2) 452-460
  • 21 Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH. Alzheimer's disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 1988; 132 (1) 86-101
  • 22 Pontes-Neto OM, Auriel E, Greenberg SM. Advances in our understanding of the pathophysiology, detection and management of cerebral amyloid angiopathy. Eur Neurol Rev 2012; 7 (2) 134-139
  • 23 Herzig MC, Van Nostrand WE, Jucker M. Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 2006; 16 (1) 40-54
  • 24 Aguzzi A, Nuvolone M, Zhu C. The immunobiology of prion diseases. Nat Rev Immunol 2013; 13 (12) 888-902
  • 25 Eisele YS, Fritschi SK, Hamaguchi T , et al. Multiple factors contribute to the peripheral induction of cerebral β-amyloidosis. J Neurosci 2014; 34 (31) 10264-10273
  • 26 Ye L, Hamaguchi T, Fritschi SK , et al. Progression of seed-induced Aβ deposition within the limbic connectome. Brain Pathol 2015; 25 (6) 743-752
  • 27 Mandybur TI. Cerebral amyloid angiopathy: the vascular pathology and complications. J Neuropathol Exp Neurol 1986; 45 (1) 79-90
  • 28 Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, Richardson Jr EP. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 1991; 30 (5) 637-649
  • 29 Hartz AMS, Bauer B, Soldner ELB , et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 2012; 43 (2) 514-523
  • 30 Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987; 18 (2) 311-324
  • 31 Zekry D, Duyckaerts C, Belmin J, Geoffre C, Moulias R, Hauw J-J. Cerebral amyloid angiopathy in the elderly: vessel walls changes and relationship with dementia. Acta Neuropathol 2003; 106 (4) 367-373
  • 32 Vinters HV, Secor DL, Read SL , et al. Microvasculature in brain biopsy specimens from patients with Alzheimer's disease: an immunohistochemical and ultrastructural study. Ultrastruct Pathol 1994; 18 (3) 333-348
  • 33 Zhao L, Arbel-Ornath M, Wang X , et al. Matrix metalloproteinase 9-mediated intracerebral hemorrhage induced by cerebral amyloid angiopathy. Neurobiol Aging 2015; 36 (11) 2963-2971
  • 34 Smith EE, Greenberg SM. β-amyloid, blood vessels, and brain function. Stroke 2009; 40 (7) 2601-2606
  • 35 Paris D, Town T, Mori T, Parker TA, Humphrey J, Mullan M. Soluble beta-amyloid peptides mediate vasoactivity via activation of a pro-inflammatory pathway. Neurobiol Aging 2000; 21 (2) 183-197
  • 36 Price JM, Sutton ET, Hellermann A, Thomas T. Beta-amyloid induces cerebrovascular endothelial dysfunction in the rat brain. Neurol Res 1997; 19 (5) 534-538
  • 37 Niwa K, Porter VA, Kazama K, Cornfield D, Carlson GA, Iadecola C. A beta-peptides enhance vasoconstriction in cerebral circulation. Am J Physiol Heart Circ Physiol 2001; 281 (6) H2417-H2424
  • 38 Smith EE, Vijayappa M, Lima F , et al. Impaired visual evoked flow velocity response in cerebral amyloid angiopathy. Neurology 2008; 71 (18) 1424-1430
  • 39 Peca S, McCreary CR, Donaldson E , et al. Neurovascular decoupling is associated with severity of cerebral amyloid angiopathy. Neurology 2013; 81 (19) 1659-1665
  • 40 Dumas A, Dierksen GA, Gurol ME , et al. Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Ann Neurol 2012; 72 (1) 76-81
  • 41 Switzer AR , et al. Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy. Neuroimage Clin 2016; 11: 461-467
  • 42 Han BH, Zhou M-L, Johnson AW , et al. Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc Natl Acad Sci U S A 2015; 112 (8) E881-E890
  • 43 Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol 2011; 10 (3) 241-252
  • 44 Zannis VI, Breslow JL, Utermann G , et al. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res 1982; 23 (6) 911-914
  • 45 Rannikmäe K, Samarasekera N, Martînez-Gonzâlez NA, Al-Shahi Salman R, Sudlow CLM. Genetics of cerebral amyloid angiopathy: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2013; 84 (8) 901-908
  • 46 Greenberg SM, Rebeck GW, Vonsattel JP, Gomez-Isla T, Hyman BT. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol 1995; 38 (2) 254-259
  • 47 Premkumar DR, Cohen DL, Hedera P, Friedland RP, Kalaria RN. Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer's disease. Am J Pathol 1996; 148 (6) 2083-2095
  • 48 Biffi A, Sonni A, Anderson CD , et al; International Stroke Genetics Consortium. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol 2010; 68 (6) 934-943
  • 49 Nicoll JA, Burnett C, Love S , et al. High frequency of apolipoprotein E epsilon 2 allele in hemorrhage due to cerebral amyloid angiopathy. Ann Neurol 1997; 41 (6) 716-721
  • 50 Biffi A, Anderson CD, Jagiella JM , et al; International Stroke Genetics Consortium. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol 2011; 10 (8) 702-709
  • 51 Montaner J. Genetics of intracerebral haemorrhage: a tsunami effect of APOE ε2 genotype on brain bleeding size?. Lancet Neurol 2011; 10 (8) 673-675
  • 52 O'Donnell HC, Rosand J, Knudsen KA , et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med 2000; 342 (4) 240-245
  • 53 Greenberg SM, Vonsattel JP, Segal AZ , et al. Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology 1998; 50 (4) 961-965
  • 54 McCarron MO, Nicoll JA, Stewart J , et al. The apolipoprotein E epsilon2 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage. J Neuropathol Exp Neurol 1999; 58 (7) 711-718
  • 55 Walker LC, Pahnke J, Madauss M , et al. Apolipoprotein E4 promotes the early deposition of Abeta42 and then Abeta40 in the elderly. Acta Neuropathol 2000; 100 (1) 36-42
  • 56 Hamaguchi T, Okino S, Sodeyama N , et al. Association of a polymorphism of the transforming growth factor-beta1 gene with cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 2005; 76 (5) 696-699
  • 57 Biffi A, Shulman JM, Jagiella JM , et al. Genetic variation at CR1 increases risk of cerebral amyloid angiopathy. Neurology 2012; 78 (5) 334-341
  • 58 Nicolas G, Wallon D, Goupil C , et al. Mutation in the 3′untranslated region of APP as a genetic determinant of cerebral amyloid angiopathy. Eur J Hum Genet 2016; 24 (1) 92-98
  • 59 Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med 2001; 344 (19) 1450-1460
  • 60 Rosand J, Muzikansky A, Kumar A , et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol 2005; 58 (3) 459-462
  • 61 Cordonnier C. Brain microbleeds: more evidence, but still a clinical dilemma. Curr Opin Neurol 2011; 24 (1) 69-74
  • 62 Van der Flier WM, Cordonnier C. Microbleeds in vascular dementia: clinical aspects. Exp Gerontol 2012; 47 (11) 853-857
  • 63 Smith EE, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Curr Atheroscler Rep 2003; 5 (4) 260-266
  • 64 Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 2011; 32 (6) 528-534
  • 65 Shams S, Martola J, Cavallin L , et al. SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 2015; 36 (6) 1089-1095
  • 66 Martinez-Ramirez S, Greenberg SM, Viswanathan A. Cerebral microbleeds: overview and implications in cognitive impairment. Alzheimers Res Ther 2014; 6 (3) 33
  • 67 Poels MMF, Vernooij MW, Ikram MA , et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke 2010; 41 (10, Suppl): S103-S106
  • 68 Martinez-Ramirez S, Romero J-R, Shoamanesh A , et al. Diagnostic value of lobar microbleeds in individuals without intracerebral hemorrhage. Alzheimers Dement J Alzheimers Assoc 2015; 11 (12) 1480-1488
  • 69 van Etten ES, Auriel E, Haley KE , et al. Incidence of symptomatic hemorrhage in patients with lobar microbleeds. Stroke 2014; 45 (8) 2280-2285
  • 70 Akoudad S, Ikram MA, Koudstaal PJ , et al. Cerebral microbleeds are associated with the progression of ischemic vascular lesions. Cerebrovasc Dis 2014; 37 (5) 382-388
  • 71 Dierksen GA, Skehan ME, Khan MA , et al. Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann Neurol 2010; 68 (4) 545-548
  • 72 Gurol ME, Dierksen G, Betensky R , et al. Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. Neurology 2012; 79 (4) 320-326
  • 73 Linn J, Halpin A, Demaerel P , et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010; 74 (17) 1346-1350
  • 74 Charidimou A, Linn J, Vernooij MW , et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain 2015; 138 (Pt 8): 2126-2139
  • 75 Charidimou A, Jäger RH, Fox Z , et al. Prevalence and mechanisms of cortical superficial siderosis in cerebral amyloid angiopathy. Neurology 2013; 81 (7) 626-632
  • 76 Charidimou A, Law R, Werring DJ. Amyloid “spells” trouble. Lancet 2012; 380 (9853) 1620
  • 77 Greenberg SM, Vonsattel JP, Stakes JW, Gruber M, Finklestein SP. The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage. Neurology 1993; 43 (10) 2073-2079
  • 78 Charidimou A, Peeters A, Fox Z , et al. Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy: multicentre magnetic resonance imaging cohort study and meta-analysis. Stroke 2012; 43 (9) 2324-2330
  • 79 Roch JA, Nighoghossian N, Hermier M , et al. Transient neurologic symptoms related to cerebral amyloid angiopathy: usefulness of T2*-weighted imaging. Cerebrovasc Dis 2005; 20 (5) 412-414
  • 80 Finelli PF. Cerebral amyloid angiopathy as cause of convexity SAH in elderly. Neurologist 2010; 16 (1) 37-40
  • 81 Brunot S, Osseby GV, Rouaud O , et al. Transient ischaemic attack mimics revealing focal subarachnoid haemorrhage. Cerebrovasc Dis 2010; 30 (6) 597-601
  • 82 Linn J, Wollenweber FA, Lummel N , et al. Superficial siderosis is a warning sign for future intracranial hemorrhage. J Neurol 2013; 260 (1) 176-181
  • 83 Charidimou A, Peeters AP, Jäger R , et al. Cortical superficial siderosis and intracerebral hemorrhage risk in cerebral amyloid angiopathy. Neurology 2013; 81 (19) 1666-1673
  • 84 Chen YW, Gurol ME, Rosand J , et al. Progression of white matter lesions and hemorrhages in cerebral amyloid angiopathy. Neurology 2006; 67 (1) 83-87
  • 85 Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 2015; [Epub ahead of print]. doi:10.1038/jcbfm.2015.88
  • 86 Zhu Y-C, Chabriat H, Godin O , et al. Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. J Neurol 2012; 259 (3) 530-536
  • 87 Thanprasertsuk S, Martinez-Ramirez S, Pontes-Neto OM , et al. Posterior white matter disease distribution as a predictor of amyloid angiopathy. Neurology 2014; 83 (9) 794-800
  • 88 Charidimou A, Boulouis G, Haley KE , et al. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2016; [Epub ahead of print]
  • 89 Gurol ME, Viswanathan A, Gidicsin C , et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study. Ann Neurol 2013; 73 (4) 529-536
  • 90 Smith EE, Gurol ME, Eng JA , et al. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology 2004; 63 (9) 1606-1612
  • 91 Benedictus MR, Hochart A, Rossi C , et al. Prognostic factors for cognitive decline after intracerebral hemorrhage. Stroke 2015; 46 (10) 2773-2778
  • 92 Viswanathan A, Patel P, Rahman R , et al. Tissue microstructural changes are independently associated with cognitive impairment in cerebral amyloid angiopathy. Stroke 2008; 39 (7) 1988-1992
  • 93 Gray F, Dubas F, Roullet E, Escourolle R. Leukoencephalopathy in diffuse hemorrhagic cerebral amyloid angiopathy. Ann Neurol 1985; 18 (1) 54-59
  • 94 Niwa K, Younkin L, Ebeling C , et al. Abeta 1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci U S A 2000; 97 (17) 9735-9740
  • 95 Iadecola C, Zhang F, Niwa K , et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 1999; 2 (2) 157-161
  • 96 Soontornniyomkij V, Lynch MD, Mermash S , et al. Cerebral microinfarcts associated with severe cerebral beta-amyloid angiopathy. Brain Pathol 2010; 20 (2) 459-467
  • 97 Haglund M, Passant U, Sjöbeck M, Ghebremedhin E, Englund E. Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia. Int J Geriatr Psychiatry 2006; 21 (7) 681-687
  • 98 Westover MB, Bianchi MT, Yang C, Schneider JA, Greenberg SM. Estimating cerebral microinfarct burden from autopsy samples. Neurology 2013; 80 (15) 1365-1369
  • 99 Auriel E, Westover MB, Bianchi MT , et al. Estimating total cerebral microinfarct burden from diffusion-weighted imaging. Stroke 2015; 46 (8) 2129-2135
  • 100 Auriel E, Gurol ME, Ayres A , et al. Characteristic distributions of intracerebral hemorrhage-associated diffusion-weighted lesions. Neurology 2012; 79 (24) 2335-2341
  • 101 Tsai Y-H, Lee M-H, Weng H-H, Chang S-W, Yang J-T, Huang Y-C. Fate of diffusion restricted lesions in acute intracerebral hemorrhage. PLoS ONE 2014; 9 (8) e105970
  • 102 Kimberly WT, Gilson A, Rost NS , et al. Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology 2009; 72 (14) 1230-1235
  • 103 van Veluw SJ, Jolink WMT, Hendrikse J , et al. Cortical microinfarcts on 7T MRI in patients with spontaneous intracerebral hemorrhage. J Cereb Blood Flow Metab 2014; 34 (7) 1104-1106
  • 104 Auriel E, Edlow BL, Reijmer YD , et al. Microinfarct disruption of white matter structure: a longitudinal diffusion tensor analysis. Neurology 2014; 83 (2) 182-188
  • 105 Launer LJ, Hughes TM, White LR. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann Neurol 2011; 70 (5) 774-780
  • 106 van Veluw SJ, Hilal S, Kuijf HJ , et al. Cortical microinfarcts on 3T MRI: clinical correlates in memory-clinic patients. Alzheimers Dement J Alzheimers Assoc 2015; 11 (12) 1500-1509
  • 107 Wardlaw JM, Smith EE, Biessels GJ , et al; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12 (8) 822-838
  • 108 Charidimou A, Meegahage R, Fox Z , et al. Enlarged perivascular spaces as a marker of underlying arteriopathy in intracerebral haemorrhage: a multicentre MRI cohort study. J Neurol Neurosurg Psychiatry 2013; 84 (6) 624-629
  • 109 Ramirez J, Berezuk C, McNeely AA, Scott CJM, Gao F, Black SE. Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the Sunnybrook Dementia Study. J Alzheimers Dis 2015; 43 (2) 415-424
  • 110 Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013; 39 (6) 593-611
  • 111 Martinez-Ramirez S, Pontes-Neto OM, Dumas AP , et al. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology 2013; 80 (17) 1551-1556
  • 112 Arbel-Ornath M, Hudry E, Eikermann-Haerter K , et al. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer's disease mouse models. Acta Neuropathol 2013; 126 (3) 353-364
  • 113 Hawkes CA, Härtig W, Kacza J , et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 2011; 121 (4) 431-443
  • 114 Cordonnier C, Leys D, Dumont F , et al. What are the causes of pre-existing dementia in patients with intracerebral haemorrhages?. Brain 2010; 133 (11) 3281-3289
  • 115 Keage HA, Carare RO, Friedland RP , et al. Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review. BMC Neurol 2009; 9: 3
  • 116 Natté R, Maat-Schieman ML, Haan J, Bornebroek M, Roos RA, van Duinen SG. Dementia in hereditary cerebral hemorrhage with amyloidosis-Dutch type is associated with cerebral amyloid angiopathy but is independent of plaques and neurofibrillary tangles. Ann Neurol 2001; 50 (6) 765-772
  • 117 Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol 2011; 69 (2) 320-327
  • 118 Reijmer YD , et al. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain 2015; 138: 179-188
  • 119 Chung KK, Anderson NE, Hutchinson D, Synek B, Barber PA. Cerebral amyloid angiopathy related inflammation: three case reports and a review. J Neurol Neurosurg Psychiatry 2011; 82 (1) 20-26
  • 120 Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 2004; 55 (2) 250-256
  • 121 Kinnecom C, Lev MH, Wendell L , et al. Course of cerebral amyloid angiopathy-related inflammation. Neurology 2007; 68 (17) 1411-1416
  • 122 Auriel E, Charidimou A, Gurol ME , et al. Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy–related inflammation. JAMA Neurol 2015; 1-6
  • 123 Hemphill III JC, Greenberg SM, Anderson CS , et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015; 46 (7) 2032-2060
  • 124 Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM ; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 2013; 382 (9890) 397-408
  • 125 Zhang Y, Wang X, Schultz C, Lanzino G, Rabinstein AA. Postoperative outcome of cerebral amyloid angiopathy-related lobar intracerebral hemorrhage: case series and systematic review. Neurosurgery 2012; 70 (1) 125-130 , discussion 130
  • 126 Biffi A, Halpin A, Towfighi A , et al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology 2010; 75 (8) 693-698
  • 127 Brouwers HB, Greenberg SM. Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc Dis 2013; 35 (3) 195-201
  • 128 Hofmeijer J, Kappelle LJ, Klijn CJM. Antithrombotic treatment and intracerebral haemorrhage: between Scylla and Charybdis. Pract Neurol 2015; 15 (4) 250-256
  • 129 Falcone GJ, Rosand J. Aspirin should be discontinued after lobar intracerebral hemorrhage. Stroke 2014; 45 (10) 3151-3152
  • 130 Al-Shahi Salman R, Dennis MS. Antiplatelet therapy may be continued after intracerebral hemorrhage. Stroke 2014; 45 (10) 3149-3150
  • 131 Flynn RWV, MacDonald TM, Murray GD, MacWalter RS, Doney ASF. Prescribing antiplatelet medicine and subsequent events after intracerebral hemorrhage. Stroke 2010; 41 (11) 2606-2611
  • 132 Schiffrin EL. Blood pressure lowering in PROGRESS (Perindopril Protection Against Recurrent Stroke Study) and white matter hyperintensities: should this progress matter to patients?. Circulation 2005; 112 (11) 1525-1526
  • 133 Dufouil C, Chalmers J, Coskun O , et al; PROGRESS MRI Substudy Investigators. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation 2005; 112 (11) 1644-1650
  • 134 Goldstein LB, Amarenco P, Szarek M , et al; SPARCL Investigators. Hemorrhagic stroke in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels study. Neurology 2008; 70 (24 Pt 2): 2364-2370
  • 135 Amarenco P, Bogousslavsky J, Callahan III A , et al; Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 2006; 355 (6) 549-559
  • 136 Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360 (9326) 7-22
  • 137 Lauer A, Greenberg SM, Gurol ME. Statins in intracerebral hemorrhage. Curr Atheroscler Rep 2015; 17 (8) 526
  • 138 Flint AC, Conell C, Rao VA , et al. Effect of statin use during hospitalization for intracerebral hemorrhage on mortality and discharge disposition. JAMA Neurol 2014; 71 (11) 1364-1371