Semin intervent Radiol 2016; 33(03): 206-216
DOI: 10.1055/s-0036-1586153
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Magnetic Resonance Image–Guided Focal Prostate Ablation

Sherif G. Nour
1   Interventional MRI Program, Emory University Hospitals and School of Medicine, Atlanta, Georgia
2   Divisions of Abdominal Imaging, Interventional Radiology, and Image-Guided Medicine, Emory University Hospitals and School of Medicine, Atlanta, Georgia
› Author Affiliations
Further Information

Publication History

Publication Date:
30 August 2016 (online)

Abstract

Prostate cancer is the most common cancer (other than skin cancer) in American men, with one in seven men being diagnosed with this disease during his lifetime. The estimated number of new prostate cancer cases in 2016 is 180,890. For the first time, imaging has become the center of the search for contained, intraglandular, small-volume, and unifocal disease, and an increasing number of academic institutions as well as private practices are implementing programs for prostate multiplanar magnetic resonance imaging (MRI) as parts of their routine offerings. This article reviews the role of MRI-guided focal prostate ablation, as well as opportunities for further growth in this minimally invasive therapy of prostate cancer.

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66 (1) 7-30
  • 2 Key Statistics for Prostate Cancer. Available at: http://www.cancer.org/cancer/prostatecancer/detailedguide/prostate-cancer-key-statistics . Accessed August 2, 2016
  • 3 Porten SP, Whitson JM, Cowan JE , et al. Changes in prostate cancer grade on serial biopsy in men undergoing active surveillance. J Clin Oncol 2011; 29 (20) 2795-2800
  • 4 Budäus L, Spethmann J, Isbarn H , et al. Inverse stage migration in patients undergoing radical prostatectomy: results of 8916 European patients treated within the last decade. BJU Int 2011; 108 (8) 1256-1261
  • 5 Silberstein JL, Vickers AJ, Power NE , et al. Reverse stage shift at a tertiary care center: escalating risk in men undergoing radical prostatectomy. Cancer 2011; 117 (21) 4855-4860
  • 6 Wilt TJ, Brawer MK, Jones KM , et al; Prostate Cancer Intervention versus Observation Trial (PIVOT) Study Group. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 2012; 367 (3) 203-213
  • 7 Miller DC, Gruber SB, Hollenbeck BK, Montie JE, Wei JT. Incidence of initial local therapy among men with lower-risk prostate cancer in the United States. J Natl Cancer Inst 2006; 98 (16) 1134-1141
  • 8 Eggener SE, Scardino PT, Carroll PR , et al; International Task Force on Prostate Cancer and the Focal Lesion Paradigm. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol 2007; 178 (6) 2260-2267
  • 9 Arora R, Koch MO, Eble JN, Ulbright TM, Li L, Cheng L. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer 2004; 100 (11) 2362-2366
  • 10 Wise AM, Stamey TA, McNeal JE, Clayton JL. Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology 2002; 60 (2) 264-269
  • 11 Simma-Chiang V, Horn JJ, Simko JP, Chan JM, Carroll PR. Increased prevalence of unifocal prostate cancer in a contemporary series of radical prostatectomy specimens: implications for focal ablation. J Urol 2006; 175: 374 , abstract 1163
  • 12 Ohori M, Eastham J, Koh H , et al. Is focal therapy reasonable in patients with early stage prostate cancer (CaP)—an analysis of radical prostatectomy (RP) specimens. J Urol 2006; (Suppl): 175
  • 13 Passoni NM, Polascik TJ. How to select the right patients for focal therapy of prostate cancer?. Curr Opin Urol 2014; 24 (3) 203-208
  • 14 Barzell WE, Melamed MR. Appropriate patient selection in the focal treatment of prostate cancer: the role of transperineal 3-dimensional pathologic mapping of the prostate—a 4-year experience. Urology 2007; 70 (6, Suppl): 27-35
  • 15 Onik G, Barzell W. Transperineal 3D mapping biopsy of the prostate: an essential tool in selecting patients for focal prostate cancer therapy. Urol Oncol 2008; 26 (5) 506-510
  • 16 Abdollah F, Scattoni V, Raber M , et al. The role of transrectal saturation biopsy in tumour localization: pathological correlation after retropubic radical prostatectomy and implication for focal ablative therapy. BJU Int 2011; 108 (3) 366-371
  • 17 Ouzzane A, Puech P, Villers A. How accurately can MRI detect indolent disease?. Curr Opin Urol 2014; 24 (3) 264-269
  • 18 Rais-Bahrami S, Siddiqui MM, Turkbey B , et al. Utility of multiparametric magnetic resonance imaging suspicion levels for detecting prostate cancer. J Urol 2013; 190 (5) 1721-1727
  • 19 Numao N, Yoshida S, Komai Y , et al. Usefulness of pre-biopsy multiparametric magnetic resonance imaging and clinical variables to reduce initial prostate biopsy in men with suspected clinically localized prostate cancer. J Urol 2013; 190 (2) 502-508
  • 20 Vargas HA, Akin O, Afaq A , et al. Magnetic resonance imaging for predicting prostate biopsy findings in patients considered for active surveillance of clinically low risk prostate cancer. J Urol 2012; 188 (5) 1732-1738
  • 21 Yerram NK, Volkin D, Turkbey B , et al. Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int 2012; 110 (11, Pt B): E783-E788
  • 22 Arumainayagam N, Ahmed HU, Moore CM , et al. Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard. Radiology 2013; 268 (3) 761-769
  • 23 Abd-Alazeez M, Ahmed HU, Arya M , et al. The accuracy of multiparametric MRI in men with negative biopsy and elevated PSA level—can it rule out clinically significant prostate cancer?. Urol Oncol 2014; 32 (1) 45.e17-45.e22
  • 24 Abd-Alazeez M, Kirkham A, Ahmed HU , et al. Performance of multiparametric MRI in men at risk of prostate cancer before the first biopsy: a paired validating cohort study using template prostate mapping biopsies as the reference standard. Prostate Cancer Prostatic Dis 2014; 17 (1) 40-46
  • 25 de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol 2016; 70 (2) 233-245
  • 26 Hoeks CM, Schouten MG, Bomers JG , et al. Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 2012; 62 (5) 902-909
  • 27 Hambrock T, Somford DM, Hoeks C , et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol 2010; 183 (2) 520-527
  • 28 Roemeling S, Roobol MJ, Kattan MW, van der Kwast TH, Steyerberg EW, Schröder FH. Nomogram use for the prediction of indolent prostate cancer: impact on screen-detected populations. Cancer 2007; 110 (10) 2218-2221
  • 29 Barentsz JO, Richenberg J, Clements R , et al; European Society of Urogenital Radiology. ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22 (4) 746-757
  • 30 Weinreb JC, Barentsz JO, Choyke PL , et al. PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol 2016; 69 (1) 16-40
  • 31 Cash H, Maxeiner A, Stephan C , et al. The detection of significant prostate cancer is correlated with the Prostate Imaging Reporting and Data System (PI-RADS) in MRI/transrectal ultrasound fusion biopsy. World J Urol 2016; 34 (4) 525-532
  • 32 da Silva RD, Jaworski P, Gustafson D, Nogueira L, Molina W, Kim FJ. How I do it: prostate cryoablation (PCry). Can J Urol 2014; 21 (2) 7251-7254
  • 33 Govorov AV, Vasil'ev AO, Ivanov V, Kovylina MV, Prilepskaia EA, Pushkar D. Treatment of prostate cancer using cryoablation: a prospective study [in Russian]. Urologiia 2014; (6) 69-72 , 4
  • 34 Gangi A, Tsoumakidou G, Abdelli O , et al. Percutaneous MR-guided cryoablation of prostate cancer: initial experience. Eur Radiol 2012; 22 (8) 1829-1835
  • 35 Bomers JG, Yakar D, Overduin CG , et al. MR imaging-guided focal cryoablation in patients with recurrent prostate cancer. Radiology 2013; 268 (2) 451-460
  • 36 Woodrum DA, Kawashima A, Karnes RJ , et al. Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: initial single institution experience. Urology 2013; 82 (4) 870-875
  • 37 Blana A, Rogenhofer S, Ganzer R , et al. Eight years' experience with high-intensity focused ultrasonography for treatment of localized prostate cancer. Urology 2008; 72 (6) 1329-1333 , discussion 1333–1334
  • 38 Thuroff S, Chaussy C, Vallancien G , et al. High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study. J Endourol 2003; 17 (8) 673-677
  • 39 Ghai S, Louis AS, Van Vliet M , et al. Real-time MRI-guided focused ultrasound for focal therapy of locally confined low-risk prostate cancer: feasibility and preliminary outcomes. AJR Am J Roentgenol 2015; 205 (2) W177-84
  • 40 Chin JL, Billia M, Relle J , et al. Magnetic resonance imaging-guided transurethral ultrasound ablation of prostate tissue in patients with localized prostate cancer: a prospective phase 1 clinical trial. Eur Urol 2016; pii: S0302-2838(15)01238-5. doi: 10.1016/j.eururo.2015.12.029. [Epub ahead of print]
  • 41 Stafford RJ, Shetty A, Elliott AM , et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol 2010; 184 (4) 1514-1520
  • 42 Woodrum DA, Gorny KR, Mynderse LA , et al. Feasibility of 3.0T magnetic resonance imaging-guided laser ablation of a cadaveric prostate. Urology 2010; 75 (6) 1514.e1-1514.e6
  • 43 Raz O, Haider MA, Davidson SR , et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol 2010; 58 (1) 173-177
  • 44 Oto A, Sethi I, Karczmar G , et al. MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology 2013; 267 (3) 932-940
  • 45 Natarajan S, Raman S, Priester AM , et al. Focal laser ablation of prostate cancer: phase I clinical trial. J Urol 2016; 196 (1) 68-75
  • 46 Nour S. MRI-guided interventions. In: Haaga J, Boll D, , eds. CT and MRI of the Whole Body. 6th ed. New York: Elsevier; 2016
  • 47 Rothgang E, Gilson WD, Wacker F, Hornegger J, Lorenz CH, Weiss CR. Rapid freehand MR-guided percutaneous needle interventions: an image-based approach to improve workflow and feasibility. J Magn Reson Imaging 2013; 37 (5) 1202-1212
  • 48 Wacker FK, Vogt S, Khamene A , et al. An augmented reality system for MR image-guided needle biopsy: initial results in a swine model. Radiology 2006; 238 (2) 497-504
  • 49 Penzkofer T, Tuncali K, Fedorov A , et al. Transperineal in-bore 3-T MR imaging-guided prostate biopsy: a prospective clinical observational study. Radiology 2015; 274 (1) 170-180
  • 50 Elhawary H, Zivanovic A, Rea M , et al. The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. Med Image Comput Comput Assist Interv 2006; 9 (Pt 1): 519-526
  • 51 Lagerburg V, Moerland MA, van Vulpen M, Lagendijk JJ. A new robotic needle insertion method to minimise attendant prostate motion. Radiother Oncol 2006; 80 (1) 73-77
  • 52 van den Bosch MR, Moman MR, van Vulpen M , et al. MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys Med Biol 2010; 55 (5) N133-N140
  • 53 Nour SG, Powell TE, Rossi PJ , eds. MRI-Guided Focal Laser Ablation for Localized Prostate Cancer: A Single Center Report on Technique and Intermediate-Term Outcomes. International Society for Magnetic Resonance in Medicine (ISMRM) 23rd Scientific Meeting; 2015; Toronto, Canada
  • 54 Derakhshan JJ, Paul S, Heidenreich JO , et al , eds. Faster Needle Insertion Using a 1.5 T Interventional Scanner and Tri Orthogonal Plane Guidance. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM) 15th Scientific Meeting; 2007; Berlin, Germany
  • 55 Siddiqui K, Chopra R, Vedula S , et al. MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 2010; 76 (6) 1506-1511
  • 56 Silverman SG, Tuncali K, vanSonnenberg E , et al. Renal tumors: MR imaging-guided percutaneous cryotherapy—initial experience in 23 patients. Radiology 2005; 236 (2) 716-724
  • 57 Tuncali K, Morrison PR, Tatli S, Silverman SG. MRI-guided percutaneous cryoablation of renal tumors: use of external manual displacement of adjacent bowel loops. Eur J Radiol 2006; 59 (2) 198-202
  • 58 Ahrar K, Ahrar JU, Javadi S , et al. Real-time magnetic resonance imaging-guided cryoablation of small renal tumors at 1.5 T. Invest Radiol 2013; 48 (6) 437-444
  • 59 Woodrum DA, Kawashima A, Gorny KR, Mynderse LA. Magnetic resonance-guided thermal therapy for localized and recurrent prostate cancer. Magn Reson Imaging Clin N Am 2015; 23 (4) 607-619
  • 60 Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology 1998; 37 (3) 171-186
  • 61 Favazza CP, Gorny KR, King DM , et al. An investigation of the effects from a urethral warming system on temperature distributions during cryoablation treatment of the prostate: a phantom study. Cryobiology 2014; 69 (1) 128-133
  • 62 Vogl TJ, Müller PK, Hammerstingl R , et al. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results. Radiology 1995; 196 (1) 257-265
  • 63 Chung YC, Duerk JL, Shankaranarayanan A, Hampke M, Merkle EM, Lewin JS. Temperature measurement using echo-shifted FLASH at low field for interventional MRI. J Magn Reson Imaging 1999; 9 (1) 138-145
  • 64 Botnar RM, Steiner P, Dubno B, Erhart P, von Schulthess GK, Debatin JF. Temperature quantification using the proton frequency shift technique: in vitro and in vivo validation in an open 0.5 tesla interventional MR scanner during RF ablation. J Magn Reson Imaging 2001; 13 (3) 437-444
  • 65 De Poorter J. Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 1995; 34 (3) 359-367
  • 66 Ishihara Y, Calderon A, Watanabe H , et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995; 34 (6) 814-823
  • 67 Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000; 12 (4) 525-533
  • 68 Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10 (6) 787-800
  • 69 Matsumoto R, Oshio K, Jolesz FA. Monitoring of laser and freezing-induced ablation in the liver with T1-weighted MR imaging. J Magn Reson Imaging 1992; 2 (5) 555-562
  • 70 Bleier AR, Jolesz FA, Cohen MS , et al. Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn Reson Med 1991; 21 (1) 132-137
  • 71 Anzai Y, Lufkin RB, Hirschowitz S, Farahani K, Castro DJ. MR imaging-histopathologic correlation of thermal injuries induced with interstitial Nd:YAG laser irradiation in the chronic model. J Magn Reson Imaging 1992; 2 (6) 671-678
  • 72 Matsumoto R, Selig AM, Colucci VM, Jolesz FA. MR monitoring during cryotherapy in the liver: predictability of histologic outcome. J Magn Reson Imaging 1993; 3 (5) 770-776
  • 73 Tracz RA, Wyman DR, Little PB , et al. Comparison of magnetic resonance images and the histopathological findings of lesions induced by interstitial laser photocoagulation in the brain. Lasers Surg Med 1993; 13 (1) 45-54
  • 74 Breen MS, Lancaster TL, Lazebnik RS, Nour SG, Lewin JS, Wilson DL. Three-dimensional method for comparing in vivo interventional MR images of thermally ablated tissue with tissue response. J Magn Reson Imaging 2003; 18 (1) 90-102
  • 75 Breen MS, Lazebnik RS, Fitzmaurice M, Nour SG, Lewin JS, Wilson DL. Radiofrequency thermal ablation: correlation of hyperacute MR lesion images with tissue response. J Magn Reson Imaging 2004; 20 (3) 475-486
  • 76 Merkle EM, Nour SG, Lewin JS. MR imaging follow-up after percutaneous radiofrequency ablation of renal cell carcinoma: findings in 18 patients during first 6 months. Radiology 2005; 235 (3) 1065-1071
  • 77 Graham SJ, Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM. Analysis of changes in MR properties of tissues after heat treatment. Magn Reson Med 1999; 42 (6) 1061-1071
  • 78 Boaz TL, Lewin JS, Chung YC, Duerk JL, Clampitt ME, Haaga JR. MR monitoring of MR-guided radiofrequency thermal ablation of normal liver in an animal model. J Magn Reson Imaging 1998; 8 (1) 64-69
  • 79 Merkle EM, Shonk JR, Duerk JL, Jacobs GH, Lewin JS. MR-guided RF thermal ablation of the kidney in a porcine model. AJR Am J Roentgenol 1999; 173 (3) 645-651
  • 80 Nour SG, Lewin JS, Gutman M , et al. Percutaneous MR imaging-guided radiofrequency interstitial thermal ablation of tongue base in porcine models: implications for obstructive sleep apnea syndrome. Radiology 2004; 230 (2) 359-368
  • 81 Ringe KI, Wacker F, Raatschen HJ. Is there a need for MRI within 24 hours after CT-guided percutaneous thermoablation of the liver?. Acta Radiol 2015; 56 (1) 10-17
  • 82 Lewin JS, Nour SG, Connell CF , et al. Phase II clinical trial of interactive MR imaging-guided interstitial radiofrequency thermal ablation of primary kidney tumors: initial experience. Radiology 2004; 232 (3) 835-845
  • 83 Porter IV CA, Woodrum DA, Callstrom MR , et al. MRI after technically successful renal cryoablation: early contrast enhancement as a common finding. AJR Am J Roentgenol 2010; 194 (3) 790-793