Rev Bras Ginecol Obstet 2016; 38(07): 348-355
DOI: 10.1055/s-0036-1586160
Original Article
Thieme Publicações Ltda Rio de Janeiro, Brazil

Epidemiological Risk Factors and Perinatal Outcomes of Congenital Anomalies

Fatores de risco epidemiológicos e resultados perinatais das anomalias congênitas
Lissa Fernandes Garcia Almeida
1   Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
,
Edward Araujo Júnior
2   Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
,
Gerson Claudio Crott
1   Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
,
Marcos Masaru Okido
1   Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
,
Aderson Tadeu Berezowski
1   Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
,
Geraldo Duarte
1   Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
,
Alessandra Cristina Marcolin
1   Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
› Author Affiliations
Further Information

Publication History

25 February 2016

10 June 2016

Publication Date:
26 July 2016 (online)

Abstract

Objectives To identify the epidemiological risk factors for congenital anomalies (CAs) and the impact of these fetal malformations on the perinatal outcomes.

Methods This prospective cohort study comprised 275 women whose fetuses had CAs. Maternal variables to establish potential risk factors for each group of CA and perinatal outcomes were evaluated. The primary outcome was CA. Secondary outcomes included: fetal growth restriction (FGR); fetal distress (FD); premature rupture of membranes (PROM); oligohydramnios or polyhydramnios; preterm delivery (PTD); stillbirth; cesarean section; low birth weight; Apgar score < 7 at the 1st and 5th minutes; need for assisted ventilation at birth; neonatal infection; need for surgical treatment; early neonatal death; and hospitalization time. Chi-square (χ2) test and multilevel regression analysis were applied to compare the groups and determine the effects of maternal characteristics on the incidence of CAs.

Results The general prevalence of CAs was of 2.4%. Several maternal characteristics were associated to CAs, such as: age; skin color; level of education; parity; folic acid supplementation; tobacco use; and history of previous miscarriage. There were no significant differences among the CA groups in relation to FGR, FD, PROM, 1-minute Apgar score > 7, and need for assisted ventilation at birth. On the other hand, the prevalence of the other considered outcomes varied significantly among groups. Preterm delivery was significantly more frequent in gastrointestinal tract/abdominal wall defects. The stillbirth rate was increased in all CAs, mainly in isolated fetal hydrops (odds ratio [OR]: 27.13; 95% confidence interval [95%CI]: 2.90–253.47). Hospitalization time was higher for the urinary tract and congenital heart disease groups (p < 0.01). Neonatal death was significantly less frequent in the central nervous system anomalies group.

Conclusion It was possible to identify several risk factors for CAs. Adverse perinatal outcomes were presented in all CA groups, and may differ according to the type of CA considered.

Resumo

Objetivos Identificar os fatores epidemiológicos de risco para anomalias congênitas (ACs) e o impacto destas malformações fetais sobre os resultados perinatais.

Métodos Este estudo de coorte prospectivo compreendeu 275 mulheres cujos fetos tinham ACs. Variáveis maternas para estabelecer potenciais fatores de risco para cada grupo de AC e resultados perinatais foram avaliados. O desfecho primário foi CAs. Os desfechos secundários incluíram: restrição de crescimento fetal (RCF); sofrimento fetal (SF); ruptura prematura de membranas (RPM); oligo-hidrâmnio ou polidrâmnio; parto pré-termo (PPT); morte fetal; parto cesárea; baixo peso ao nascer; índice de Apgar < 7 no 1° e 5° minutos; necessidade de ventilação assistida no momento do nascimento; infecção neonatal; necessidade de tratamento cirúrgico; óbito neonatal precoce; e tempo de internação. Teste de Qui-quadrado (χ2) e análise de regressão múltipla foram aplicados para comparar os resultados entre os grupos e determinar os efeitos das características maternas sobre a incidência de ACs.

Resultados A prevalência geral de ACs foi de 2.4%. Várias características maternas foram associadas às ACs, tais como: idade; cor da pele; escolaridade; paridade; suplementação com ácido fólico; tabagismo; e histórico de aborto anterior. Não houve diferenças significativas entre os grupos de ACs com relação à RCF, SF, RPM, índice de Apgar < 7 no 1° minuto e necessidade de ventilação assistida no nascimento. Por outro lado, a prevalência dos demais resultados adversos considerados variou significativamente entre os grupos. O parto pré-termo foi significativamente mais frequente nos casos de defeitos do trato gastrointestinal/parede abdominal. As taxas de óbito fetal foram elevadas em todos os grupos de ACs, principalmente na hidropsia fetal isolada (odds ratio [OR]: 27.13; intervalo de confiança de 95% [IC95%]: 2.90–253.47). O tempo de internação foi maior nos casos de anomalias do trato urinário e nas cardiopatias congênitas (p < 0,01). O óbito neonatal foi significativamente menos frequente no grupo de anomalias do sistema nervoso central.

Conclusão Foi possível identificar vários fatores de risco para ACs. Resultados perinatais adversos foram observados em todos os grupos de ACs, e podem diferir de acordo com o tipo de AC considerada.

 
  • References

  • 1 Liu X, Roth J. Development and validation of an infant morbidity index using latent variable models. Stat Med 2008; 27 (7) 971-989
  • 2 Mattison DR. Environmental exposures and development. Curr Opin Pediatr 2010; 22 (2) 208-218
  • 3 Brent RL. Environmental causes of human congenital malformations: the pediatrician's role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors. Pediatrics 2004; 113 (4, Suppl) 957-968
  • 4 Jentink J, Dolk H, Loane MA , et al; EUROCAT Antiepileptic Study Working Group. Intrauterine exposure to carbamazepine and specific congenital malformations: systematic review and case-control study. BMJ 2010; 341: c6581
  • 5 Little J, Cardy A, Arslan MT, Gilmour M, Mossey PA. Smoking and orofacial clefts: a United Kingdom-based case-control study. Cleft Palate Craniofac J 2004; 41 (4) 381-386
  • 6 Boix H, Ortega-Aznar A, Vazquez E, Salcedo S, Roig-Quilis M. Brainstem dysgenesis in an infant prenatally exposed to cocaine. Pediatr Neurol 2010; 42 (4) 295-297
  • 7 Wattendorf DJ, Muenke M. Fetal alcohol spectrum disorders. Am Fam Physician 2005; 72 (2) 279-282 , 285
  • 8 Zhao Z, Reece EA. Experimental mechanisms of diabetic embryopathy and strategies for developing therapeutic interventions. J Soc Gynecol Investig 2005; 12 (8) 549-557
  • 9 Gilbert-Barness E. Teratogenic causes of malformations. Ann Clin Lab Sci 2010; 40 (2) 99-114
  • 10 Marecki MA, Bozzette M. Infections in the perinatal period. J Perinat Neonatal Nurs 2008; 22 (3) 173-174
  • 11 Oster ME, Riehle-Colarusso T, Correa A. An update on cardiovascular malformations in congenital rubella syndrome. Birth Defects Res A Clin Mol Teratol 2010; 88 (1) 1-8
  • 12 Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe. Adv Exp Med Biol 2010; 686: 349-364
  • 13 Arroll N, Sadler L, Stone P, Masson V, Farquhar C. Can we improve the prevention and detection of congenital abnormalities? An audit of early pregnancy care in New Zealand. N Z Med J 2013; 126 (1380) 46-56
  • 14 Ruano R, Ali RA, Patel P, Cass D, Olutoye O, Belfort MA. Fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia: indications, outcomes, and future directions. Obstet Gynecol Surv 2014; 69 (3) 147-158
  • 15 Gajewska-Knapik K, Impey L. Congenital lung lesions: Prenatal diagnosis and intervention. Semin Pediatr Surg 2015; 24 (4) 156-159
  • 16 Sanapo L, Moon-Grady AJ, Donofrio MT. Perinatal and delivery management of infants with congenital heart disease. Clin Perinatol 2016; 43 (1) 55-71
  • 17 Al-Matary A, Ali J. Controversies and considerations regarding the termination of pregnancy for foetal anomalies in Islam. BMC Med Ethics 2014; 15: 10
  • 18 Grandjean H, Larroque D, Levi S. The performance of routine ultrasonographic screening of pregnancies in the Eurofetus Study. Am J Obstet Gynecol 1999; 181 (2) 446-454
  • 19 Stoll C, Tenconi R, Clementi M. Detection of congenital anomalies by fetal ultrasonographic examination across Europe. Community Genet 2001; 4 (4) 225-232
  • 20 European Surveillance of Congenital Anomalies (EUROCAT) [Internet]. Prenatal screening and diagnosis: prenatal detection rates. 2016 [cited 2016 May 23]. Available from: http://www.eurocat-network.eu/prenatalscreeninganddiagnosis/prenataldetection(pd)rates
  • 21 Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991; 181 (1) 129-133
  • 22 Magann EF, Sanderson M, Martin JN, Chauhan S. The amniotic fluid index, single deepest pocket, and two-diameter pocket in normal human pregnancy. Am J Obstet Gynecol 2000; 182 (6) 1581-1588
  • 23 Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York: John Willey & Sons; 2000
  • 24 Population Screening Programmes. NHS Fetal Anomaly Screening Programme (FASP) [Internet]. 2016 [cited 2016 May 23]. Available from: https://www.gov.uk/topic/population-screening-programmes/fetal-anomaly
  • 25 Sairam S, Al-Habib A, Sasson S, Thilaganathan B. Natural history of fetal hydronephrosis diagnosed on mid-trimester ultrasound. Ultrasound Obstet Gynecol 2001; 17 (3) 191-196
  • 26 Dias T, Sairam S, Kumarasiri S. Ultrasound diagnosis of fetal renal abnormalities. Best Pract Res Clin Obstet Gynaecol 2014; 28 (3) 403-415
  • 27 Tegnander E, Eik-Nes SH. The examiner's ultrasound experience has a significant impact on the detection rate of congenital heart defects at the second-trimester fetal examination. Ultrasound Obstet Gynecol 2006; 28 (1) 8-14
  • 28 Pinto NM, Nelson R, Puchalski M, Metz TD, Smith KJ. Cost-effectiveness of prenatal screening strategies for congenital heart disease. Ultrasound Obstet Gynecol 2014; 44 (1) 50-57
  • 29 Barisic I, Clementi M, Häusler M, Gjergja R, Kern J, Stoll C ; Euroscan Study Group. Evaluation of prenatal ultrasound diagnosis of fetal abdominal wall defects by 19 European registries. Ultrasound Obstet Gynecol 2001; 18 (4) 309-316
  • 30 Csermely G, Susánszky É, Czeizel AE, Veszprémi B. Possible association of first and high birth order of pregnant women with the risk of isolated congenital abnormalities in Hungary - a population-based case-matched control study. Eur J Obstet Gynecol Reprod Biol 2014; 179: 181-186
  • 31 Morales-Suárez-Varela MM, Bille C, Christensen K, Olsen J. Smoking habits, nicotine use, and congenital malformations. Obstet Gynecol 2006; 107 (1) 51-57
  • 32 Bellini C, Hennekam RC. Non-immune hydrops fetalis: a short review of etiology and pathophysiology. Am J Med Genet A 2012; 158A (3) 597-605
  • 33 Eckmann-Scholz C, von Kaisenberg CS, Alkatout I, Jonat W, Rajabi-Wieckhorst A. Pathologic ultrasound findings and risk for congenital anomalies in teenage pregnancies. J Matern Fetal Neonatal Med 2012; 25 (10) 1950-1952
  • 34 Youngblood ME, Williamson R, Bell KN, Johnson Q, Kancherla V, Oakley Jr GP. 2012 Update on global prevention of folic acid-preventable spina bifida and anencephaly. Birth Defects Res A Clin Mol Teratol 2013; 97 (10) 658-663
  • 35 Goldenberg RL, Kirby R, Culhane JF. Stillbirth: a review. J Matern Fetal Neonatal Med 2004; 16 (2) 79-94