Synlett 2016; 27(18): 2525-2529
DOI: 10.1055/s-0036-1588073
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in the Direct Methylation of Electron-­Deficient N-Heteroarenes

Junghoon Kim, Seung Hwan Cho*
  • Department of Chemistry and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea   eMail: seunghwan@postech.ac.kr
Weitere Informationen

Publikationsverlauf

Received: 24. August 2016

Accepted after revision: 29. August 2016

Publikationsdatum:
05.September 2016 (eFirst)

Abstract

The direct introduction of methyl groups into electron-deficient N-heteroarenes has recently emerged as an efficient and promising strategy to afford methylated N-heteroarenes, which are important motifs in a variety of pharmaceuticals and biologically active molecules. Herein, three general state-of-the-art approaches including radical-mediated, transition-metal-catalyzed, or transition-metal-free direct C–H methylations of electron-deficient N-heteroarenes are highlighted.

1 Introduction

2 Radical-Mediated Methylation of Electron-Deficient N-Heteroarenes

3 Transition-Metal-Catalyzed Methylation of Electron-Deficient N-Heteroarenes

4 Transition-Metal-Free Methylation of Electron-Deficient N-Heteroarenes

5 Conclusions

 
  • References

    • 1a Barreiro EJ, Kummerle AE, Fraga CA. M. Chem. Rev. 2011; 111: 5215
    • 1b Schonherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
    • 3a Kakiuchi F, Chatani N. Adv. Synth. Catal. 2003; 345: 1077
    • 3b Lewis JC, Bergman RG, Ellman JA. Acc. Chem. Res. 2008; 41: 1013
    • 3c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 3d McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 3e Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 4 Nakao Y. Synthesis 2011; 3209

    • For selected examples of metal-catalyzed C–H alkylation of electron-deficient N-heteroarenes, see:
    • 5a Lewis JC, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2007; 129: 5332
    • 5b Ryu J, Cho SH, Chang S. Angew. Chem. Int. Ed. 2012; 51: 3677
    • 5c Nakao Y, Yamada Y, Kashihara N, Hiyama T. J. Am. Chem. Soc. 2010; 132: 13666
    • 5d Xiao B, Liu Z.-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 616
    • 5e Andou T, Saga Y, Komai H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 3213
    • 5f Shibata T, Takano H. Org. Chem. Front. 2015; 2: 383

      For selected examples of radical-mediated C–H alkylation of electron-deficient N-heteroarenes, see:
    • 6a Deng G, Ueda K, Yanagisawa S, Itami K, Li C.-J. Chem. Eur. J. 2009; 15: 333
    • 6b Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852
    • 6c Antonchick AP, Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
    • 6d Jin J, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565

      For selected examples of transition-metal-free C–H alkylation of electron-deficient N-heteroarenes, see:
    • 7a Andersson H, Almqvist F, Olsson R. Org. Lett. 2007; 9: 1335
    • 7b Andersson H, Sainte-Luce Banchelin T, Das S, Olsson R, Almqvist F. Chem. Commun. 2010; 46: 3384
    • 7c Zhang F, Duan X.-F. Org. Lett. 2011; 13: 6102
    • 7d Londregan AT, Jennings S, Wei L. Org. Lett. 2011; 13: 1840
    • 7e Jeffrey JL, Sarpong R. Org. Lett. 2012; 14: 5400
    • 7f Chen Q, Mollat du Jourdin X, Knochel P. J. Am. Chem. Soc. 2013; 135: 4958
  • 8 Nicolaou KC, Koumbis AE, Snyder SA, Simonsen KB. Angew. Chem. Int. Ed. 2000; 39: 2529
    • 9a Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
    • 9b Duncton MA. J. MedChemComm 2011; 2: 1135
  • 10 Gui J, Zhou Q, Pan C.-M, Yabe Y, Burns AC, Collins MR, Ornelas MA, Ishihara Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 4853
  • 11 DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
  • 12 Jin J, MacMillan DW. C. Nature (London, U.K.) 2015; 525: 87
  • 13 Yao B, Song R.-J, Liu Y, Xie Y.-X, Li J.-H, Wang M.-K, Tang R.-Y, Zhang X.-G, Deng C.-L. Adv. Synth. Catal. 2012; 354: 1890
  • 14 Jo W, Kim J, Choi S, Cho SH. Angew. Chem. Int. Ed. 2016; 55: 9690