Synlett 2017; 28(02): 148-158
DOI: 10.1055/s-0036-1588129
synpacts
© Georg Thieme Verlag Stuttgart · New York

Hantzsch Esters as Multifunctional Reagents in Visible-Light Photoredox Catalysis

Wenhao Huang
a   Institute of Chemistry and Biomedical Science, School of Chemistry and Chemical Engineering, Nanjing University Xianlin Campus, Xianlin Rd. 163, Nanjing, Jiangsu Province, 210023, P. R. of China
,
Xu Cheng*
a   Institute of Chemistry and Biomedical Science, School of Chemistry and Chemical Engineering, Nanjing University Xianlin Campus, Xianlin Rd. 163, Nanjing, Jiangsu Province, 210023, P. R. of China
b   State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China   Email: chengxu@nju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 02 November 2016

Accepted after revision: 05 December 2016

Publication Date:
16 December 2016 (online)


Abstract

Hantzsch esters are used extensively in photoredox catalysis as terminal reductants, donating an electron and a hydrogen atom. They generally exert their reducing potential by means of single-electron transfer to a photoredox catalyst, which acts as an electron shuttle. Recently, they were found to effect single-electron transfer upon visible-light irradiation in the absence of a photocatalyst. We found that this ability could be used for debromination of vicinal dibromo compounds to afford alkenes, as well as for hydrodifluoroacetamidation reactions. We also found that substituted Hantzsch esters could be used as reductive alkylation reagents to build highly congested ketones.

 
  • References

  • 1 Hantzsch A. Ber. Dtsch. Chem. Ges. 1881; 14: 1637
  • 2 Bergstrom FW. Chem. Rev. 1944; 35: 77
    • 3a Yang JW, Fonseca MT. H, List B. Angew. Chem. Int. Ed. 2004; 43: 6660
    • 3b Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
    • 3c Yang JW, Fonseca MT. H, Vignola N, List B. Angew. Chem. Int. Ed. 2005; 44: 108
    • 3d Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
  • 4 Ouellet SG, Tuttle JB, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 32
    • 5a Ouellet SG, Walji AM, Macmillan DW. C. Acc. Chem. Res. 2007; 40: 1327
    • 5b Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
  • 6 Zhu X.-Q, Li H.-R, Li Q, Ai T, Lu J.-Y, Yang Y, Cheng J.-P. Chem. Eur. J. 2003; 9: 871
    • 7a Hedstrand DM, Kruizinga WH, Kellogg RM. Tetrahedron Lett. 1978; 19: 1255
    • 7b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 8a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 8b Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 9a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 9b Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 9c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 9d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 9e Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 9f Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 9g Schultz DM, Yoon TP. Science 2014; 343
    • 9h Meggers E. Chem. Commun. 2015; 51: 3290
    • 9i Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
    • 9j Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 10 Zhu X.-Q, Li H.-R, Li Q, Ai T, Lu J.-Y, Yang Y, Cheng J.-P. Chem. Eur. J. 2003; 9: 871
  • 11 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
  • 12 Howes KR, Bakac A, Espenson JH. Inorg. Chem. 1988; 27: 3147
  • 13 Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
  • 14 Lee JH, Mho S.-I. J. Org. Chem. 2015; 80: 3309
  • 15 Luo J, Zhang X, Zhang J. ACS Catal. 2015; 5: 2250
  • 16 Andrews RS, Becker JJ, Gagné MR. Angew. Chem. Int. Ed. 2010; 49: 7274
  • 17 Larraufie M.-H, Pellet R, Fensterbank L, Goddard J.-P, Lacôte E, Malacria M, Ollivier C. Angew. Chem. Int. Ed. 2011; 50: 4463
  • 18 Rackl D, Kais V, Kreitmeier P, Reiser O. Beilstein J. Org. Chem. 2014; 10: 2157
  • 19 Speckmeier E, Padié C, Zeitler K. Org. Lett. 2015; 17: 4818
    • 20a Hu C, Chen Y. Org. Chem. Front. 2015; 2: 1352
    • 20b Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 1872
  • 21 Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
  • 22 Jung J, Kim J, Park G, You Y, Cho EJ. Adv. Synth. Catal. 2016; 358: 74
  • 23 Panferova LI, Tsymbal AV, Levin VV, Struchkova MI, Dilman AD. Org. Lett. 2016; 18: 996
  • 24 Chen W, Tao H, Huang W, Wang G, Li S, Cheng X, Li G. Chem. Eur. J. 2016; 22: 9546
    • 25a Huang W, Chen W, Wang G, Li J, Cheng X, Li G. ACS Catal. 2016; 7471
    • 25b Perkowski AJ, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 10334
  • 26 Li G, Chen R, Wu L, Fu Q, Zhang X, Tang Z. Angew. Chem. Int. Ed. 2013; 52: 8432
  • 27 Nakajima K, Nojima S, Sakata K, Nishibayashi Y. ChemCatChem 2016; 8: 1028
  • 28 Chen W, Liu Z, Tian J, Li J, Ma J, Cheng X, Li G. J. Am. Chem. Soc. 2016; 138: 12312
  • 29 Nakajima K, Nojima S, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14106
  • 30 Gutiérrez-Bonet Á, Tellis JC, Matsui JK, Vara BA, Molander GA. ACS Catal. 2016; 6: 8004