Synthesis 2017; 49(18): 4173-4182
DOI: 10.1055/s-0036-1588416
special topic
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Indole Derivatives from the Reaction of Nitroalkynes and Alkynes via a Mercury-Carbene Intermediate

Min Zheng
a   Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. of China
,
Kai Chen
a   Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. of China
,
Shifa Zhu*
a   Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. of China
b   State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China
› Author Affiliations
We are grateful to the Ministry of Science and Technology of the People’s Republic of China (2016YFA0602900), the NSFC (21372086, 21422204, and 21672071), Guangdong NSF (2014A030313229, 2016A030310433), and the Fundamental Research Funds for the Central Universities, SCUT.
Further Information

Publication History

Received: 18 March 2017

Accepted after revision: 10 April 2017

Publication Date:
15 May 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

The cyclization of nitroalkyne catalyzed by Hg(OTf)2 to produce the corresponding benzo[c]isoxazole in excellent yields with high selectivity is reported. On the basis of this strategy, a one-pot method to synthesize indole derivatives has been developed. In this transformation, two Hg-carbene intermediates are proposed to be involved.

Supporting Information

 
  • References

    • 1a Tejedor D. Lopez-Tosco S. Mendez-Abt G. Cotos L. Garcia-Tellado F. Acc. Chem. Res. 2016; 49: 703
    • 1b Krause N. Winter C. Chem. Rev. 2011; 111: 1994
    • 1c Long L. Huang J. Shao W. Liu S. Lan Y. Gong J. Yang Z. Nature Commun. 2014; 5: 5707
    • 1d Zheng N. Chang YY. Zhang LJ. Gong JX. Yang Z. Chem. Asian J. 2016; 11: 371
    • 1e Ma J. Zhang L. Zhu S. Curr. Org. Chem. 2016; 20: 102
    • 1f Chen K. Zhu S. Synlett 2017; 28: 640
    • 1g Asiri AM. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 4471
    • 2a Asao N. Sato K. Yamamoto Y. Tetrahedron Lett. 2003; 44: 5675
    • 2b Suneel Kumar CV. Ramana CV. Org. Lett. 2014; 16: 4766
    • 2c Ramana CV. Patel P. Vanka K. Miao B. Degterev A. Eur. J. Org. Chem. 2010; 5955
    • 2d Jadhav AM. Bhunia S. Liao HY. Liu RS. J. Am. Chem. Soc. 2011; 133: 1769
    • 2e Li X. Incarvito CD. Vogel T. Crabtree RH. Organometallics 2005; 24: 3066
    • 2f Marien N. Brigou B. Pinter B. De Proft F. Verniest G. Org. Lett. 2015; 17: 270
    • 2g Cikotiene I. Eur. J. Org. Chem. 2012; 2766
    • 4a Preston PN. Tennant G. Chem. Rev. 1972; 72: 627
    • 4b Rosen GM. Tsai P. Barth ED. Dorey G. Casara P. Speeding M. Halpern HJ. J. Org. Chem. 2000; 65: 4460
    • 4c Genisson VB. Bouniol AV. Nepveu F. Synlett 2001; 700
    • 5a Jin H. Tian B. Song X. Xie J. Rudolph M. Rominger F. Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 12688
    • 5b Jin H. Huang L. Xie J. Rudolph M. Rominger F. Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 794
    • 5c Yu S. Li Y. Zhou X. Wang H. Kong L. Li X. Org. Lett. 2016; 18: 2812
    • 5d Li L. Wang H. Yu S. Yang X. Li X. Org. Lett. 2016; 18: 3662

      Representative reviews:
    • 6a Dyker G. Angew. Chem. Int. Ed. 2000; 39: 4237
    • 6b Hashmi AS. K. Gold Bull. 2004; 37: 51
    • 6c Hashmi AS. K. Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
    • 6d Jiménez-Núñez E. Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 6e Gorin DJ. Sherry BD. Toste FD. Chem. Rev. 2008; 108: 3351
    • 6f Li Z. Brouwer C. He C. Chem. Rev. 2008; 108: 3239
    • 6g Carlos Lima J. Rodriguez L. Chem. Soc. Rev. 2011; 40: 5442
    • 6h From our group: Zhu S. Zhang Z. Huang X. Jiang H. Guo Z. Chem. Eur. J. 2013; 19: 4695
    • 6i Zhu S. Hu L. Jiang H. Org. Biomol. Chem. 2014; 12: 4104
    • 6j Zhu S. Guo Z. Huang Z. Jiang H. Chem. Eur. J. 2014; 20: 2425
    • 6k Ma J. Jiang H. Zhu S. Org. Lett. 2014; 16: 4472
    • 6l Zhu S. Huang X. Zhao T.-Q. Ma T. Jiang H. Org. Biomol. Chem. 2015; 13: 1225
    • 6m Cao T. Chen K. Zhu S. Org. Chem. Front. 2017; 4: 450
    • 6n Zhang C. Jiang H. Zhu S. Chem. Commun. 2017; 53: 2667
    • 6o For applications see: Pflästerer D. Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
    • 8a Yamamoto H. Ueda M. Yamasaki N. Fujii A. Sasaki I. Igawa K. Kasai Y. Imagawa H. Nishizawa M. Org. Lett. 2016; 18: 2864
    • 8b Nishizawa M. Imagawa H. Yamamoto H. Org. Biomol. Chem. 2010; 8: 511
    • 8c Nishizawa M. Takao H. Yadav VK. Imagawa H. Sugihara T. Org. Lett. 2003; 5: 4563
    • 8d Cao Z. Zhou F. Yu Y. Zhou J. Org. Lett. 2013; 15: 42
    • 8e Zhou F. Cao ZY. Zhang J. Yang HB. Zhou J. Chem. Asian J. 2012; 7: 233
    • 8f Hashmi AS. K. Schwarz L. Rubenbauer P. Blanco MC. Adv. Synth. Catal. 2006; 348: 705
    • 8g Hashmi AS. K. Schwarz L. Bats JW. J. Prakt. Chem. 2000; 342: 40
    • 8h Hashmi AS. K. Schwarz L. Choi JH. Frost TM. Angew. Chem. Int. Ed. 2000; 39: 2285
    • 8i Cao Z. Jiang J. Zhou J. Org. Biomol. Chem. 2016; 14: 5500
    • 8j Zhu F. Zhou F. Cao Z. Wang C. Zhang Y. Wang C. Zhou J. Synthesis 2012; 44: 3129
    • 8k Cao Z. Zhang Y. Ji C. Zhou J. Org. Lett. 2011; (13) 6398
    • 9a Liang R. Chen K. Zhang Q. Zhang J. Jiang H. Zhu S. Angew. Chem. Int. Ed. 2016; 55: 2587
    • 9b Ma J. Chen K. Fu H. Zhang L. Wu W. Jiang H. Zhu S. Org. Lett. 2016; 18: 1322
    • 9c Zhu S. Zhang Q. Chen K. Jiang H. Angew. Chem. Int. Ed. 2015; 54: 9414
    • 9d Liang R. Jiang H. Zhu S. Chem. Commun. 2015; 51: 5530
    • 9e Liang R. Ma T. Zhu S. Org. Lett. 2014; 16: 4412
    • 9f Zhu S. Huang H. Zhang Z. Ma T. Jiang H. J. Org. Chem. 2014; 79: 6113
    • 9g Zhu S. Xiao Y. Guo Z. Jiang H. Org. Lett. 2013; 15: 898
    • 9h Zhu S. Liang R. Jiang H. Wu W. Angew. Chem. Int. Ed. 2012; 51: 10861
    • 9i Zhu D. Ma J. Luo K. Fu H. Zhang L. Zhu S. Angew. Chem. Int. Ed. 2016; 55: 8452
    • 9j Zhang J. Xiao Y. Chen K. Wu W. Jiang H. Zhu S. Adv. Synth. Catal. 2016; 358: 2684
    • 9k Luo H. Chen K. Jiang H. Zhu S. Org. Lett. 2016; 18: 5208
  • 10 Kang S. Joo C. Kim SM. Han H. Yang JW. Tetrahedron Lett. 2011; 52: 502
  • 11 Piemontesi C. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2016; 55: 6556