Synthesis 2017; 49(13): 2928-2932
DOI: 10.1055/s-0036-1588439
special topic
© Georg Thieme Verlag Stuttgart · New York

Iodine(III)-Mediated Oxidative Hydrolysis of Haloalkenes: Investigation of the Effect of Iodine(III) Reagents

Robin Dagenais
Université de Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec), J1K 2R1, Canada   Fax: Fax +1(819)8218017   Email: claude.legault@usherbrooke.ca
,
Antoine Jobin-Des Lauriers
Université de Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec), J1K 2R1, Canada   Fax: Fax +1(819)8218017   Email: claude.legault@usherbrooke.ca
,
Université de Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec), J1K 2R1, Canada   Fax: Fax +1(819)8218017   Email: claude.legault@usherbrooke.ca
› Author Affiliations
Further Information

Publication History

Received: 31 March 2017

Accepted after revision: 04 May 2017

Publication Date:
07 June 2017 (online)


Published as part of the Special Topic Modern Strategies with Iodine in Synthesis

Abstract

The iodine(III)-mediated oxidative transposition of vinyl halides to the corresponding α-halo ketones has been recently reported. The method is high yielding and offers good substrate scope. The investigation of other iodine(III) reagents to promote this reaction is described. The newly developed protocol reduces the number of waste products formed in the synthetic transformation. A structure–reactivity relationship study of numerous [hydroxy(tosyloxy)iodo]arenes toward haloalkenes is reported. The results highlight the challenge of obtaining a chemoselective reaction using these reagents.

 
  • References

    • 1a Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Chichester, UK: Wiley; 2013
    • 1b Tohma H. Kita Y. In Hypervalent Iodine Chemistry. Wirth T. Berlin: Springer; 2003: 209
    • 1c Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
    • 1d Moriarty RM. Prakash O. Org. React. 2001; 57: 327
    • 1e Varvoglis A. Hypervalent Iodine in Organic Synthesis. Academic Press; San Diego: 1997
    • 2a Khanna MS. Garg CP. Kapoor RP. Tetrahedron Lett. 1992; 33: 1495
    • 2b For an Iodine(III) variant, see: Koser GF. Relenyi AG. Kalos AN. Rebrovic L. Wettach RH. J. Org. Chem. 1982; 47: 2487
    • 3a Bosset C. Coffinier R. Peixoto PA. El Assal M. Miqueu K. Sotiropoulos J.-M. Pouységu L. Quideau S. Angew. Chem. Int. Ed. 2014; 53: 9860
    • 3b Volp K. Harned AM. Chem. Commun. 2013; 3001
    • 3c Uyanik M. Yasui T. Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
    • 3d Uyanik M. Yasui T. Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 3e Uyanik M. Yasui T. Ishihara K. Tetrahedron 2010; 66: 5841
    • 3f Quideau S. Lyvinec G. Marguerit M. Bathany K. Ozanne-Beaudenon A. Buffeteau T. Cavagnat D. Chénedé A. Angew. Chem. Int. Ed. 2009; 48: 4605
    • 3g Boppisetti JK. Birman VB. Org. Lett. 2009; 11: 1221
    • 3h Dohi T. Maruyama A. Takenaga N. Senami K. Minamitsuji Y. Fujioka H. Caemmerer SB. Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 4a Singh FV. Wirth T. Chem. Asian J. 2014; 9: 950
    • 4b Dohi T. Kita Y. Chem. Commun. 2009; 2073
    • 4c Uyanik M. Ishihara K. Chem. Commun. 2009; 2086
    • 4d Zhdankin VV. ARKIVOC 2009; 1
    • 4e Richardson RD. Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
    • 4f Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656

      Reviews on hypervalent iodine-mediated asymmetric transformations:
    • 5a Kumar R. Wirth T. Top. Curr. Chem. 2015; 373: 243
    • 5b Berthiol F. Synthesis 2015; 47: 587
    • 5c Parra A. Reboredo S. Chem. Eur. J. 2013; 19: 17244
    • 5d Ngatimin M. Lupton DW. Aust. J. Chem. 2010; 63: 653
  • 6 Basdevant B. Guilbault A.-A. Beaulieu S. Jobin-Des Lauriers A. Legault CY. Pure Appl. Chem. 2017; DOI: DOI:10.1515/pac-2016-1212.

    • Reviews on hypervalent iodine-mediated functionalization of carbonyl compounds:
    • 7a Dong D.-Q. Hao S.-H. Wang Z.-L. Chen C. Org. Biomol. Chem. 2014; 12: 4278
    • 7b Merritt EA. Olofsson B. Synthesis 2011; 517
    • 8a Thérien M.-È. Guilbault A.-A. Legault CY. Tetrahedron: Asymmetry 2013; 24: 1193
    • 8b Guilbault A.-A. Basdevant B. Wanie V. Legault CY. J. Org. Chem. 2012; 77: 11283
    • 8c Guilbault A.-A. Legault CY. ACS Catal. 2012; 2: 219
    • 9a Brenet S. Minozzi C. Clarens B. Amiri L. Berthiol F. Synthesis 2015; 47: 3859
    • 9b Brenet S. Berthiol F. Einhorn J. Eur. J. Org. Chem. 2013; 8094
    • 9c Rodriguez A. Moran WJ. Synthesis 2012; 44: 1178
    • 9d Yu J. Cui J. Hou X.-S. Liu S.-S. Gao W.-C. Jiang S. Tian J. Zhang C. Tetrahedron: Asymmetry 2011; 22: 2039
    • 9e Farooq U. Schäfer S. Shah AA. Freudendahl DM. Wirth T. Synthesis 2010; 1023
    • 9f Altermann SM. Richardson RD. Page TK. Schmidt RK. Holland E. Mohammed U. Paradine SM. French AN. Richter C. Bahar AM. Witulski B. Wirth T. Eur. J. Org. Chem. 2008; 5315
    • 9g Richardson RD. Page TK. Altermann SM. Paradine SM. French AN. Wirth T. Synlett 2007; 538
    • 9h Hirt UH. Schuster MF. H. French AN. Wiest OG. Wirth T. Eur. J. Org. Chem. 2001; 1569
    • 9i Hirt UH. Spingler B. Wirth T. J. Org. Chem. 1998; 63: 7674
    • 9j Wirth T. Hirt UH. Tetrahedron: Asymmetry 1997; 8: 23
  • 10 Jobin-Des Lauriers A. Legault CY. Asian J. Org. Chem. 2016; 5: 1078
  • 12 Jobin-Des Lauriers A. Legault CY. Org. Lett. 2016; 18: 108
    • 13a Yusubov MS. Wirth T. Org. Lett. 2005; 7: 519
    • 13b Koser GF. Wettach RH. Troup JM. Frenz BA. J. Org. Chem. 1976; 41: 3609
  • 14 Yamamoto Y. Togo H. Synlett 2005; 2486
  • 15 Merritt EA. Carneiro VM. T. Silva LF. Olofsson B. J. Org. Chem. 2010; 75: 7416
  • 16 Zagulyaeva AA. Yusubov MS. Zhdankin VV. J. Org. Chem. 2010; 75: 2119
  • 17 Brown HC. Okamoto Y. J. Am. Chem. Soc. 1958; 80: 4979