Synthesis 2017; 49(17): 4082-4092
DOI: 10.1055/s-0036-1588447
paper
© Georg Thieme Verlag Stuttgart · New York

A Three-Component Reaction for the One-Pot Preparation of β-Amino-α,α-Difluoroketones from Trimethyl(trifluoromethyl)silane (CF3TMS), Acylsilanes and Imines

Aurélien Honraedt
Institut Charles Gerhardt UMR 5253 CNRS-UM2-UM1-ENSCM 8, rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France   eMail: eric.leclerc@enscm.fr
,
Lucía Reyes Méndez
Institut Charles Gerhardt UMR 5253 CNRS-UM2-UM1-ENSCM 8, rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France   eMail: eric.leclerc@enscm.fr
,
Jean-Marc Campagne
Institut Charles Gerhardt UMR 5253 CNRS-UM2-UM1-ENSCM 8, rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France   eMail: eric.leclerc@enscm.fr
,
Eric Leclerc*
Institut Charles Gerhardt UMR 5253 CNRS-UM2-UM1-ENSCM 8, rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France   eMail: eric.leclerc@enscm.fr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 11. April 2017

Accepted after revision: 05. Mai 2017

Publikationsdatum:
13. Juni 2017 (online)


Abstract

A methodology allowing the direct preparation of β-amino-α,α-difluoroketones from the Ruppert–Prakash reagent (CF3TMS), acyltrimethylsilanes and N-Boc or N-(diphenylphosphinyl)imines is reported. The process, initiated by a catalytic amount of tetra-n-butylammonium difluorotriphenylsilicate (TBAT), involves the addition of CF3TMS to the acylsilane, followed by a Brook rearrangement and elimination of a fluoride anion. The latter promotes the addition of the resulting difluoroenoxysilane to the imine. The higher electrophilicity of the acylsilane compared to the imine allows the direct mixing of all the reagents in a three-component, one-pot process.

Supporting Information

 
  • References

    • 1a Gillis EP. Eastman KJ. Hill MD. Donnelly DJ. Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 1b Wang J. Sánchez-Roselló M. Aceña JL. Del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 1c Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1d Muller K. Faeh C. Diederich F. Science 2007; 317: 1881

      For reviews on fluorination and trifluoromethylation reactions, see:
    • 2a Preshlock S. Tredwell M. Gouverneur V. Chem. Rev. 2016; 116: 719
    • 2b Champagne PA. Desroches J. Hamel J.-D. Vandamme M. Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 2c Campbell MG. Ritter T. Chem. Rev. 2015; 115: 612
    • 2d Wang S.-M. Han J.-B. Zhang C.-P. Qin H.-L. Xiao J.-C. Tetrahedron 2015; 71: 7949
    • 2e Charpentier J. Früh N. Togni A. Chem. Rev. 2015; 115: 650
    • 2f Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
    • 2g Egami H. Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
    • 2h Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 2i Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950

      For reviews including difluoromethylation methods, see references 2f and 2h, and the following:
    • 3a Chatterjee T. Iqbal N. You Y. Cho EJ. Acc. Chem. Res. 2016; 49: 2284
    • 3b Ni C. Zhu L. Hu J. Acta Chim. Sinica 2015; 73: 90
    • 3c Ni C. Hu J. Synthesis 2014; 46: 842
    • 3d Hu J. Zhang W. Wang F. Chem. Commun. 2009; 7465

      For some recent and representative examples, see:
    • 4a Li X. Zhao J. Hu M. Chen D. Ni C. Wang L. Hu J. Chem. Commun. 2016; 52: 3657
    • 4b Miao W. Ni C. Zhao Y. Hu J. Org. Lett. 2016; 18: 2766
    • 4c Ivanova MV. Bayle A. Besset T. Poisson T. Pannecoucke X. Angew. Chem. Int. Ed. 2015; 54: 13406
    • 4d Su Y.-M. Hou Y. Yin F. Xu Y.-M. Li Y. Zheng X. Wang X.-S. Org. Lett. 2014; 16: 2958
    • 4e Wang L. Wei X.-J. Lei W.-L. Chen H. Wu L.-Z. Liu Q. Chem. Commun. 2014; 50: 15916
    • 4f Shen X. Zhang W. Ni C. Gu Y. Hu J. J. Am. Chem. Soc. 2012; 134: 16999 and references cited therein

      For some recent and representative examples, see:
    • 5a Chen D. Ni C. Zhao Y. Cai X. Li X. Xiao P. Hu J. Angew. Chem. Int. Ed. 2016; 55: 12632
    • 5b Lin Q.-Y. Xu X.-H. Zhang K. Qing F.-L. Angew. Chem. Int. Ed. 2016; 55: 1479
    • 5c Chang D. Gu Y. Shen Q. Chem. Eur. J. 2015; 21: 6074
    • 5d Fier PS. Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 2092
    • 5e Iida T. Hashimoto R. Aikawa K. Ito S. Mikami K. Angew. Chem. Int. Ed. 2012; 51: 9535
    • 5f Fujiwara Y. Dixon JA. Rodriguez RA. Baxter RD. Dixon DD. Collins MR. Blackmond DG. Baran PS. J. Am. Chem. Soc. 2012; 134: 1494 and references cited therein

      For recent and representative examples, other than aldol and related reactions, see:
    • 6a Andersen TL. Frederiksen MW. Domino K. Skrydstrup T. Angew. Chem. Int. Ed. 2016; 128: 10396
    • 6b Xiao Y.-L. Min Q.-Q. Xu C. Wang R.-W. Zhang X. Angew. Chem. Int. Ed. 2016; 55: 5837
    • 6c Arlow SI. Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 4567
    • 6d Li G. Wang T. Fei F. Su Y.-M. Li Y. Lan Q. Wang X.-S. Angew. Chem. Int. Ed. 2016; 55: 3491
    • 6e Feng Z. Min Q.-Q. Zhao H.-Y. Gu J.-W. Zhang X. Angew. Chem. Int. Ed. 2014; 54: 1270
    • 6f Yu Y.-B. He G.-Z. Zhang X. Angew. Chem. Int. Ed. 2014; 53: 10457
    • 6g Ge S. Chaładaj W. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4149
    • 6h Zhou Q. Ruffoni A. Gianatassio R. Fujiwara Y. Sella E. Shabat D. Baran PS. Angew. Chem. Int. Ed. 2013; 52: 3949 and references cited therein

      For selected examples of difluoroaldol reactions, see:
    • 7a Liao F.-M. Liu Y.-L. Yu J.-S. Zhou F. Zhou J. Org. Biomol. Chem. 2015; 13: 8906
    • 7b Yu J.-S. Liu Y.-L. Tang J. Wang X. Zhou J. Angew. Chem. Int. Ed. 2014; 53: 9512
    • 7c Liu Y.-L. Zhou J. Chem. Commun. 2012; 48: 1919
    • 7d Blond G. Billard T. Langlois BR. Chem. Eur. J. 2002; 8: 2917
    • 7e Amii H. Kobayashi T. Hatamoto Y. Uneyama K. Chem. Commun. 1999; 1323
    • 7f Weigel JA. J. Org. Chem. 1997; 62: 6108
    • 7g Iseki K. Kuroki Y. Asada D. Takahashi M. Kishimoto S. Kobayashi Y. Tetrahedron 1997; 53: 10271 and references cited therein

      For selected examples of imino-Reformatsky reactions, see:
    • 8a Cao C.-R. Jiang M. Liu J.-T. Eur. J. Org. Chem. 2015; 1144
    • 8b Tarui A. Ikebata T. Sato K. Omote M. Ando A. Org. Biomol. Chem. 2014; 12: 6484
    • 8c Fontenelle CQ. Conroy M. Light M. Poisson T. Pannecoucke X. Linclau B. J. Org. Chem. 2014; 79: 4186
    • 8d Poisson T. Belhomme M.-C. Pannecoucke X. J. Org. Chem. 2012; 77: 9277
    • 8e March TL. Johnston MR. Duggan PJ. Org. Lett. 2012; 14: 182
    • 8f Tarui A. Ozaki D. Nakajima N. Yokota Y. Sokeirik YS. Sato K. Omote M. Kumadaki I. Ando A. Tetrahedron Lett. 2008; 49: 3839
    • 8g Boyer N. Gloanec P. De Nanteuil G. Jubault P. Quirion J.-C. Tetrahedron 2007; 63: 12352
    • 8h Sorochinsky A. Voloshin N. Markovsky A. Belik M. Yasuda N. Uekusa H. Ono T. Berbasov DO. Soloshonok VA. J. Org. Chem. 2003; 68: 7448
    • 8i Staas DD. Savage KL. Homnick CF. Tsou NN. Ball RG. J. Org. Chem. 2002; 67: 8276 and references cited therein

      For selected examples of Mukaiyama–Mannich and related reactions, see:
    • 9a Yu J.-S. Zhou J. Org. Biomol. Chem. 2015; 13: 10968
    • 9b Chen Q. Zhou J. Wang Y. Wang C. Liu X. Xu Z. Lin L. Wang R. Org. Lett. 2015; 17: 4212
    • 9c Yuan Z. Mei L. Wei Y. Shi M. Kattamuri PV. McDowell P. Li G. Org. Biomol. Chem. 2012; 10: 2509
    • 9d Kashikura W. Mori K. Akiyama T. Org. Lett. 2011; 13: 1860
    • 9e Chu L. Zhang X. Qing F.-L. Org. Lett. 2009; 11: 2197
    • 9f Chung WJ. Omote M. Welch JT. J. Org. Chem. 2005; 70: 7784
    • 9g Taguchi T. Kitagawa O. Suda Y. Ohkawa S. Hashimoto A. Iitaka Y. Kobayashi Y. Tetrahedron Lett. 1988; 29: 5291 and references cited therein
  • 10 For a review on the synthesis and applications of fluorinated enol ethers, see: Decostanzi M. Campagne J.-M. Leclerc E. Org. Biomol. Chem. 2015; 13: 7351

    • For selected examples, see:
    • 11a Qian J. Yi W. Huang X. Jasinski JP. Zhang W. Adv. Synth. Catal. 2016; 358: 2811
    • 11b Mei H. Xie C. Aceña JL. Soloshonok VA. Röschenthaler G.-V. Han J. Eur. J. Org. Chem. 2015; 6401
    • 11c Xie C. Wu L. Mei H. Soloshonok VA. Han J. Pan Y. Tetrahedron Lett. 2014; 55: 5908
    • 11d Xie C. Wu L. Mei H. Soloshonok VA. Han J. Pan Y. Org. Biomol. Chem. 2014; 12: 7836
    • 11e Li W. Zhu X. Mao H. Tang Z. Cheng Y. Zhu C. Chem. Commun. 2014; 50: 7521
    • 11f Zhang P. Wolf C. Angew. Chem. Int. Ed. 2013; 52: 7869
    • 11g Zhang P. Wolf C. J. Org. Chem. 2012; 77: 8840
    • 11h Han C. Kim EH. Colby DA. J. Am. Chem. Soc. 2011; 133: 5802
    • 11i John JP. Colby DA. J. Org. Chem. 2011; 76: 9163

      For sequential Brook rearrangement/fluoride elimination, Mukaiyama–aldol and Mannich reactions, see:
    • 12a Jonet S. Cherouvrier F. Brigaud T. Portella C. Eur. J. Org. Chem. 2005; 4304
    • 12b Lefebvre O. Brigaud T. Portella C. J. Org. Chem. 2001; 66: 1941
    • 12c Saleur D. Brigaud T. Bouillon J.-P. Portella C. Synlett 1999; 432
    • 12d Brigaud T. Doussot P. Portella C. J. Chem. Soc., Chem. Commun. 1994; 2117
  • 13 Decostanzi M. Godemert J. Oudeyer S. Levacher V. Campagne J.-M. Leclerc E. Adv. Synth. Catal. 2016; 358: 526
  • 14 For a similar approach leading to monofluorinated aldols, see: Decostanzi M. Van Der Lee A. Campagne J.-M. Leclerc E. Adv. Synth. Catal. 2015; 357: 3091
    • 15a Li Y. Hu J. Angew. Chem. Int. Ed. 2007; 46: 2489
    • 15b Prakash GK. S. Mandal M. Olah GA. Angew. Chem. Int. Ed. 2001; 40: 589
  • 16 Das M. O’Shea DF. Chem. Eur. J. 2015; 21: 18717
    • 17a Best D. Kujawa S. Lam HW. J. Am. Chem. Soc. 2012; 134: 18193
    • 17b Wenzel AG. Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 12964
    • 17c Kanazawa AM. Denis J.-N. Greene AE. J. Org. Chem. 1994; 59: 1238
  • 18 Ballweg DM. Miller RC. Gray DL. Scheidt KA. Org. Lett. 2005; 7: 1403