Synthesis 2017; 49(16): 3590-3601
DOI: 10.1055/s-0036-1588464
special topic
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Reductive Cross-Coupling of Aryl Triflates and Nonaflates with Alkyl Iodides

Yuto Sumida*
a   Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan   Email: takamitsu.hosoya@riken.jp   Email: yuto.sumida@riken.jp
,
Tomoe Sumida
a   Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan   Email: takamitsu.hosoya@riken.jp   Email: yuto.sumida@riken.jp
,
a   Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan   Email: takamitsu.hosoya@riken.jp   Email: yuto.sumida@riken.jp
b   Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan   Email: thosoya.cb@tmd.ac.jp
› Author Affiliations
This research was supported by JSPS KAKENHI Grant Number 16K17907 (Y.S.); Japan Prize Foundation (Y.S.); the Incentive Research Grant from RIKEN (Y.S.).
Further Information

Publication History

Received: 31 March 2017

Accepted after revision: 20 May 2017

Publication Date:
28 June 2017 (online)


Dedicated to Professor Teruaki Mukaiyama in celebration of his 90th birthday (Sotsuju­)
Published as part of the Special Topic Advanced Strategies in Synthesis with Nickel

Abstract

A nickel-catalyzed cross-electrophile coupling of aryl triflates and nonaflates with alkyl iodides using manganese(0) as a reductant is described. The method is applicable to the reductive alkylation of various aryl sulfonates, including o-borylaryl triflate, which enabled efficient construction of diverse alkylated arenes under mild conditions.

Supporting Information

 
  • References

    • 1a Metal-Catalyzed Cross-Coupling Reactions . 2nd ed.; de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004
    • 1b Transition Metals for Organic Synthesis . 2nd ed.; Beller M. Bolm C. Wiley-VCH; Weinheim: 2004
    • 1c Frisch AC. Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 1d Rudolph A. Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656

      Recent reviews, see:
    • 2a Moragas T. Correa A. Martin R. Chem. Eur. J. 2014; 20: 8242
    • 2b Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 2c Wang X. Dai Y. Gong H. Top. Curr. Chem. 2016; 374: 43
    • 4a Sumida Y. Kato T. Hosoya T. Org. Lett. 2013; 15: 2806
    • 4b Sumida Y. Harada R. Kato-Sumida T. Johmoto K. Uekusa H. Hosoya T. Org. Lett. 2014; 16: 6240

    • Reports from other groups, see:
    • 4c García-López J.-A. Greaney MF. Org. Lett. 2014; 16: 2338
    • 4d Ikawa T. Yamamoto R. Takagi A. Ito T. Shimizu K. Goto M. Hamashima Y. Akai S. Adv. Synth. Catal. 2015; 357: 2287
    • 4e Ngamsomprasert N. Yakiyama Y. Sakurai H. Chem. Lett. 2017; 46: 446
  • 5 Sumida Y. Sumida T. Hashizume D. Hosoya T. Org. Lett. 2016; 18: 5600
  • 6 For an example of Ni-catalyzed cross-coupling of aryl triflates, see: Ackerman LK. G. Lovell MM. Weix DJ. Nature (London) 2015; 524: 454
  • 7 Bathophenanthroline was used as an optimal ligand in reductive alkylation of 2-chloropyridine. See ref. 3f.
    • 8a Correa A. León T. Martin R. J. Am. Chem. Soc. 2014; 136: 1062
    • 8b Correa A. Martin R. J. Am. Chem. Soc. 2014; 136: 7253
  • 9 Wallin Å. Svanvik J. Holmlund B. Ferreud L. Sun X.-F. Oncol. Rep. 2008; 19: 1493
  • 10 One example of Ni-catalyzed reductive alkylation of alkenyl triflate was reported. See: Johnson KA. Biswas S. Weix DJ. Chem. Eur. J. 2016; 22: 7399
  • 11 It was reported that the reaction of aryl–Ni(dppp)Br with iodomethane did not proceed without zinc, indicating that alkylation of aryl–Ni(II)Br complex 6 or 7 proceeded after the ligand exchange. See: Hu L. Liu X. Liao X. Angew. Chem. Int. Ed. 2016; 55: 9743
  • 12 Newcomb M. Kinetics of Radical Reactions: Radical Clocks . In Radicals in Organic Synthesis . 1st ed., Vol. 1; Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 317-336
  • 13 See the Supporting Information for details.
    • 14a Tsou TT. Kochi JK. J. Am. Chem. Soc. 1979; 101: 7547
    • 14b Hegedus LS. Thompson DH. P. J. Am. Chem. Soc. 1985; 107: 5663
  • 15 Although aryl iodide and bromide are possibly generated with the formation of complex III, neither of the aryl halides was detected probably because they could participate in the catalytic cycle. Oxidative addition of aryl iodide and bromide to (bipyridine)Ni(0) proceeds more smoothly than aryl triflate under similar conditions. For an example, see ref. 6.
  • 16 Another mechanism (Figure S3), wherein a free alkyl radical is uninvolved, is also conceivable. See the Supporting Information for details. We appreciate the reviewer for the suggestion.

    • Proposed mechanism for olefin isomerization (Scheme [9]): β-Carbon elimination of the cyclopropylmethyl–Ni(II)X complex i provides but-3-enyl–Ni(II)X complex ii, from which the but-3-enylated product 9 can be generated. Furthermore, formation of olefin-isomerized products 10 and 11 can be explained by the generation of a π-allyl–Ni(II)X complex iv, which can be formed from the buta-1,3-diene-coordinated nickel(II) hydride intermediate iii via the β-hydrogen elimination of but-3-enyl–Ni(II)X complex ii. For β-carbon elimination, see:
    • 17a Nakamura I. Yamamoto Y. Adv. Synth. Catal. 2002; 344: 111
    • 17b Masarwa A. Marek I. Chem. Eur. J. 2010; 16: 9712
    • 17c Ogoshi S. Nagata M. Kurosawa H. J. Am. Chem. Soc. 2006; 128: 5350
    • 17d Sumida Y. Yorimitsu H. Oshima K. Org. Lett. 2008; 10: 4677
    • 17e Sumida Y. Yorimitsu H. Oshima K. J. Org. Chem. 2009; 74: 3196
  • 18 Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett. 1983; 1211

    • For our recent aryne chemistry using o-silylaryl triflates, see:
    • 19a Yoshida S. Hosoya T. Chem. Lett. 2013; 42: 583
    • 19b Yoshida S. Hazama Y. Sumida Y. Yano T. Hosoya T. Molecules 2015; 20: 10131
    • 19c Yoshida S. Shimomori K. Nonaka T. Hosoya T. Chem. Lett. 2015; 44: 1324
    • 19d Yoshida S. Sugimura Y. Hazama Y. Nishiyama Y. Yano T. Shimizu S. Hosoya T. Chem. Commun. 2015; 51: 16613
    • 19e Yoshida S. Yano T. Misawa Y. Sugimura Y. Igawa K. Shimizu S. Tomooka K. Hosoya T. J. Am. Chem. Soc. 2015; 137: 14071
    • 19f Yoshida S. Nakamura Y. Uchida K. Hazama Y. Hosoya T. Org. Lett. 2016; 18: 6212
    • 19g Yoshida S. Nakajima H. Uchida K. Yano T. Kondo M. Matsushita T. Hosoya T. Chem. Lett. 2017; 46: 77
    • 20a The Chemistry of Organic Silicon Compounds, Volume 1 . Patai S. Rappoport Z. Wiley; Chichester: 1989
    • 20b The Chemistry of Organic Silicon Compounds, Volume 2 . Rappoport Z. Apeloig Y. Patai S. Wiley; Chichester: 1998
    • 20c Brook MA. Silicon in Organic, Organometallic, and Polymer Chemistry. Wiley; New York: 2000
  • 21 Hall DG. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. 2nd ed., Vol. 1; Hall DG. Wiley-VCH; Weinheim: 2011: 1-134