Synlett 2017; 28(18): 2453-2459
DOI: 10.1055/s-0036-1588488
cluster
© Georg Thieme Verlag Stuttgart · New York

(HMe2SiCH2)2: A Useful Reagent for B(C6F5)3-Catalyzed Reduction–Lactonization of Keto Acids: Concise Syntheses of (–)-cis-Whisky and (–)-cis-Cognac Lactones

Hengmu Xiea, Ji Lua, Yingying Guia, Lu Gaoa, Zhenlei Song*a, b
  • aKey Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. of China   Email: zhenleisong@scu.edu.cn
  • bState Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China
We are grateful for financial support from the National Natural Science Foundation of China (21290180, 21622202, 21502125).
Further Information

Publication History

Received: 23 April 2017

Accepted after revision: 10 June 2017

Publication Date:
19 July 2017 (eFirst)

Published as part of the Cluster Silicon in Synthesis and Catalysis

Abstract

(HMe2SiCH2)2 has been utilized as a useful reagent for B(C6F5)3-catalyzed reduction–lactonization of keto acids to synthesize γ- and δ-lactones. The process led concisely to (–)-cis-whisky and (–)-cis-cognac lactones in respective overall yields of 32% and 36%.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Alonso DM. Wettstein SG. Dumesic JA. Green Chem. 2013; 15: 584
    • 1b Lorente A. Merketegi JL. Albericio F. Álvarez M. Chem. Rev. 2013; 113: 4567

      For selected reviews, see:
    • 2a Kitson RR. A. Millemaggi A. Taylor RJ. K. Angew. Chem. Int. Ed. 2009; 48: 9426
    • 2b Salvador G. Margarita P. Pablo R. Jose S. Mini-Rev. Org. Chem. 2009; 6: 345
    • 3a Fábos V. Mika LT. Horváth IT. Organometallics 2014; 33: 181
    • 3b Shimizu K.-I. Kanno S. Kon K. Green Chem. 2014; 16: 3899
    • 3c Yang Z. Huang Y.-B. Guo Q.-X. Fu Y. Chem. Commun. 2013; 49: 5328
    • 4a Ramachandran PV. Pitre S. Brown HC. J. Org. Chem. 2002; 67: 5315
    • 4b Frenette R. Kakushima M. Zamboni R. Young RN. Verhoeven TR. J. Org. Chem. 1987; 52: 304

      For selected reviews, see:
    • 5a Nikolaos D. Erhan O. Bill M. Synlett 2016; 27: 1760
    • 5b Oestreich M. Hermeke J. Mohr J. Chem. Soc. Rev. 2015; 44: 2202
    • 5c Robert T. Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 5216
    • 5d Hatano M. Ishihara K. Chem. Commun. 2012; 48: 4273
    • 5e Erker G. Chem. Commun. 2003; 13: 1469
    • 5f Chen EY.-X. Marks TJ. Chem. Rev. 2000; 100: 1391
    • 5g Ishihara K. Yamamoto H. Eur. J. Org. Chem. 1999; 527
    • 5h Piers WE. Chivers T. Chem. Soc. Rev. 1997; 26: 345

    • For selected seminal works on B(C6F5)3, see:
    • 5i Massey AG. Park AJ. Stone FG. A. Proc. Chem. Soc. 1963; 212
    • 5j Yang X. Stern CL. Marks TJ. J. Am. Chem. Soc. 1991; 113: 3623
    • 5k Ishihara K. Hananki N. Yamamoto H. Synlett 1993; 577
    • 5l Ishihara K. Hananki N. Yamamoto H. Synlett 1995; 721
    • 5m Temme B. Erker G. Karl J. Luftmann H. Fröhlich R. Kotila S. Angew. Chem., Int. Ed. Engl. 1995; 34: 1755
    • 5n Parks DJ. Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
    • 5o Welch GC. Juan RR. S. Masuda JD. Stephan DW. Science 2006; 314: 1124
    • 5p Spies P. Erker G. Kehr G. Bergander K. Fröhlich R. Grimme S. Stephan DW. Chem. Commun. 2007; 5072
    • 6a Houghton AY. Hurmalainen J. Mansikkamäki A. Piers WE. Tuononen HM. Nat. Chem. 2014; 6: 983
    • 6b Hermeke J. Mewald M. Oestreich M. J. Am. Chem. Soc. 2013; 135: 17537
    • 6c Sakata K. Fujimoto H. J. Org. Chem. 2013; 78: 12505
    • 6d Piers WE. Marwitz AJ. V. Mercier LG. Inorg. Chem. 2011; 50: 12252
    • 6e Rendler S. Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
    • 6f Parks DJ. Blackwell JM. Piers WE. J. Org. Chem. 2000; 65: 3090
    • 7a Kim YC. Chang S. Angew. Chem. Int. Ed. 2016; 55: 218
    • 7b Ma YH. Wang BL. Zhang L. Hou ZM. J. Am. Chem. Soc. 2016; 138: 3663
    • 7c Wübbolt S. Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 15876
    • 7d Kim DW. Joung S. Kim JG. Chang S. Angew. Chem. Int. Ed. 2015; 54: 14805
    • 7e Chatterjee I. Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 1965
    • 7f Gandhamsetty N. Park S. Chang S. J. Am. Chem. Soc. 2015; 137: 15176
    • 7g Zhang Z. Du H. Angew. Chem. Int. Ed. 2015; 54: 623
    • 7h Gandhamsetty N. Joung S. Park S.-W. Park S. Chang S. J. Am. Chem. Soc. 2014; 136: 16780
    • 7i Liu Y. Du H. J. Am. Chem. Soc. 2013; 135: 6810
    • 7j Bézier D. Park S. Brookhart M. Org. Lett. 2013; 15: 496
    • 7k Mewald M. Oestreich M. Chem. Eur. J. 2012; 18: 14079
    • 7l Geier SJ. Chase PA. Stephan DW. Chem. Commun. 2010; 46: 4884
    • 7m Shchepin R. Xu C. Dussault P. Org. Lett. 2010; 12: 4772
    • 7n Harrison DJ. McDonald R. Rosenberg L. Organometallics 2005; 24: 1398
    • 7o Chandrasekhar S. Reddy CR. Babu BN. J. Org. Chem. 2002; 67: 9080
    • 7p Rubin M. Schwier T. Gevorgyan V. J. Org. Chem. 2002; 67: 1936
    • 7q Blackwell JM. Morrison DJ. Piers WE. Tetrahedron 2002; 58: 8247
    • 7r Blackwell JM. Sonmor ER. Scoccitti T. Piers WE. Org. Lett. 2000; 2: 3921
    • 8a Hazra CK. Gandhamsetty N. Park S. Chang S. Nat. Commun. 2016; 7: 13431
    • 8b Bender TA. Dabrowski JA. Zhong HY. Gagne MR. Org. Lett. 2016; 18: 4120
    • 8c Adduci LL. Bender TA. Dabrowski JA. Gagné MR. Nat. Chem. 2015; 7: 576
    • 8d Drosos N. Morandi B. Angew. Chem. Int. Ed. 2015; 54: 8814
    • 8e Mack DJ. Guo B. Njardarson JT. Chem. Commun. 2012; 48: 7844
    • 8f Chojnowski J. Rubinsztajn S. Cella JA. Fortuniak W. Cypryk M. Kurjata J. Kaźmierski K. Organometallics 2005; 24: 6077
    • 8g Gevorgyan V. Liu J.-X. Rubin M. Benson S. Yamamoto Y. Tetrahedron Lett. 1999; 40: 8919
  • 9 Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 10a Hreczycho G. Eur. J. Inorg. Chem. 2015; 67
    • 10b Hanada S. Motoyama Y. Nagashima H. Eur. J. Org. Chem. 2008; 4097
  • 11 Liu ZJ. Lin XL. Yang N. Su ZS. Hu CW. Xiao PH. He YY. Song ZL. J. Am. Chem. Soc. 2016; 138: 1877 ; and references cited therein

    • For related works, see:
    • 12a Sakai N. Horikawa S. Ogiwara Y. RSC Adv. 2016; 6: 81763
    • 12b Bercot EA. Kindrachuk DE. Rovis T. Org. Lett. 2005; 7: 107
    • 12c Mukaiyama T. Izumi J. Shiina I. Chem. Lett. 1997; 187
  • 13 Corma A. Iborra S. Velty A. Chem. Rev. 2007; 107: 2411
  • 14 Horváth IT. Mehdi H. Fábos V. Boda L. Mika LT. Green Chem. 2008; 10: 238
    • 15a Korpaka M. Pietruszkaa J. Adv. Synth. Catal. 2011; 353: 1420
    • 15b Adrio LA. Quek LS. Taylor JG. Hii KK. M. Tetrahedron 2009; 65: 10334
    • 15c Müller P. Lacrampe F. Bernardinelli G. Tetrahedron: Asymmetry 2003; 14: 1503
    • 15d Fang J.-M. Hong B.-C. Liao L.-F. J. Org. Chem. 1987; 52: 855
  • 16 Chatterjee B. Mondal D. Bera S. Tetrahedron: Asymmetry 2012; 23: 1170
  • 17 Koschker P. Kähny M. Breit B. J. Am. Chem. Soc. 2015; 137: 3131 ; and references cited therein
    • 18a Pisani L. Superchi S. D’Elia A. Scafato P. Rosini C. Tetrahedron 2012; 68: 5779
    • 18b Ghosh M. Bose S. Ghosh S. Tetrahedron Lett. 2008; 49: 5424
    • 18c Zhang Y. Wang Y.-Q. Dai W.-M. J. Org. Chem. 2006; 71: 2445
    • 18d Ozeki M. Hashimoto D. Nishide K. Kajimoto T. Node M. Tetrahedron: Asymmetry 2005; 16: 1663
  • 19 Nahm S. Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
  • 20 Craig II RA. Loskot SA. Mohr JT. Behenna DC. Harned AM. Stoltz BM. Org. Lett. 2015; 17: 5160