Synlett 2017; 28(18): 2453-2459
DOI: 10.1055/s-0036-1588488
cluster
© Georg Thieme Verlag Stuttgart · New York

(HMe2SiCH2)2: A Useful Reagent for B(C6F5)3-Catalyzed Reduction–Lactonization of Keto Acids: Concise Syntheses of (–)-cis-Whisky and (–)-cis-Cognac Lactones

Hengmu Xie
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. of China   Email: zhenleisong@scu.edu.cn
,
Ji Lu
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. of China   Email: zhenleisong@scu.edu.cn
,
Yingying Gui
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. of China   Email: zhenleisong@scu.edu.cn
,
Lu Gao
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. of China   Email: zhenleisong@scu.edu.cn
,
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. of China   Email: zhenleisong@scu.edu.cn
State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (21290180, 21622202, 21502125).
Further Information

Publication History

Received: 23 April 2017

Accepted after revision: 10 June 2017

Publication Date:
19 July 2017 (eFirst)

Published as part of the Cluster Silicon in Synthesis and Catalysis

Abstract

(HMe2SiCH2)2 has been utilized as a useful reagent for B(C6F5)3-catalyzed reduction–lactonization of keto acids to synthesize γ- and δ-lactones. The process led concisely to (–)-cis-whisky and (–)-cis-cognac lactones in respective overall yields of 32% and 36%.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Alonso DM. Wettstein SG. Dumesic JA. Green Chem. 2013; 15: 584
    • 1b Lorente A. Merketegi JL. Albericio F. Álvarez M. Chem. Rev. 2013; 113: 4567

      For selected reviews, see:
    • 2a Kitson RR. A. Millemaggi A. Taylor RJ. K. Angew. Chem. Int. Ed. 2009; 48: 9426
    • 2b Salvador G. Margarita P. Pablo R. Jose S. Mini-Rev. Org. Chem. 2009; 6: 345
    • 3a Fábos V. Mika LT. Horváth IT. Organometallics 2014; 33: 181
    • 3b Shimizu K.-I. Kanno S. Kon K. Green Chem. 2014; 16: 3899
    • 3c Yang Z. Huang Y.-B. Guo Q.-X. Fu Y. Chem. Commun. 2013; 49: 5328
    • 4a Ramachandran PV. Pitre S. Brown HC. J. Org. Chem. 2002; 67: 5315
    • 4b Frenette R. Kakushima M. Zamboni R. Young RN. Verhoeven TR. J. Org. Chem. 1987; 52: 304

      For selected reviews, see:
    • 5a Nikolaos D. Erhan O. Bill M. Synlett 2016; 27: 1760
    • 5b Oestreich M. Hermeke J. Mohr J. Chem. Soc. Rev. 2015; 44: 2202
    • 5c Robert T. Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 5216
    • 5d Hatano M. Ishihara K. Chem. Commun. 2012; 48: 4273
    • 5e Erker G. Chem. Commun. 2003; 13: 1469
    • 5f Chen EY.-X. Marks TJ. Chem. Rev. 2000; 100: 1391
    • 5g Ishihara K. Yamamoto H. Eur. J. Org. Chem. 1999; 527
    • 5h Piers WE. Chivers T. Chem. Soc. Rev. 1997; 26: 345

    • For selected seminal works on B(C6F5)3, see:
    • 5i Massey AG. Park AJ. Stone FG. A. Proc. Chem. Soc. 1963; 212
    • 5j Yang X. Stern CL. Marks TJ. J. Am. Chem. Soc. 1991; 113: 3623
    • 5k Ishihara K. Hananki N. Yamamoto H. Synlett 1993; 577
    • 5l Ishihara K. Hananki N. Yamamoto H. Synlett 1995; 721
    • 5m Temme B. Erker G. Karl J. Luftmann H. Fröhlich R. Kotila S. Angew. Chem., Int. Ed. Engl. 1995; 34: 1755
    • 5n Parks DJ. Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
    • 5o Welch GC. Juan RR. S. Masuda JD. Stephan DW. Science 2006; 314: 1124
    • 5p Spies P. Erker G. Kehr G. Bergander K. Fröhlich R. Grimme S. Stephan DW. Chem. Commun. 2007; 5072
    • 6a Houghton AY. Hurmalainen J. Mansikkamäki A. Piers WE. Tuononen HM. Nat. Chem. 2014; 6: 983
    • 6b Hermeke J. Mewald M. Oestreich M. J. Am. Chem. Soc. 2013; 135: 17537
    • 6c Sakata K. Fujimoto H. J. Org. Chem. 2013; 78: 12505
    • 6d Piers WE. Marwitz AJ. V. Mercier LG. Inorg. Chem. 2011; 50: 12252
    • 6e Rendler S. Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
    • 6f Parks DJ. Blackwell JM. Piers WE. J. Org. Chem. 2000; 65: 3090
    • 7a Kim YC. Chang S. Angew. Chem. Int. Ed. 2016; 55: 218
    • 7b Ma YH. Wang BL. Zhang L. Hou ZM. J. Am. Chem. Soc. 2016; 138: 3663
    • 7c Wübbolt S. Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 15876
    • 7d Kim DW. Joung S. Kim JG. Chang S. Angew. Chem. Int. Ed. 2015; 54: 14805
    • 7e Chatterjee I. Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 1965
    • 7f Gandhamsetty N. Park S. Chang S. J. Am. Chem. Soc. 2015; 137: 15176
    • 7g Zhang Z. Du H. Angew. Chem. Int. Ed. 2015; 54: 623
    • 7h Gandhamsetty N. Joung S. Park S.-W. Park S. Chang S. J. Am. Chem. Soc. 2014; 136: 16780
    • 7i Liu Y. Du H. J. Am. Chem. Soc. 2013; 135: 6810
    • 7j Bézier D. Park S. Brookhart M. Org. Lett. 2013; 15: 496
    • 7k Mewald M. Oestreich M. Chem. Eur. J. 2012; 18: 14079
    • 7l Geier SJ. Chase PA. Stephan DW. Chem. Commun. 2010; 46: 4884
    • 7m Shchepin R. Xu C. Dussault P. Org. Lett. 2010; 12: 4772
    • 7n Harrison DJ. McDonald R. Rosenberg L. Organometallics 2005; 24: 1398
    • 7o Chandrasekhar S. Reddy CR. Babu BN. J. Org. Chem. 2002; 67: 9080
    • 7p Rubin M. Schwier T. Gevorgyan V. J. Org. Chem. 2002; 67: 1936
    • 7q Blackwell JM. Morrison DJ. Piers WE. Tetrahedron 2002; 58: 8247
    • 7r Blackwell JM. Sonmor ER. Scoccitti T. Piers WE. Org. Lett. 2000; 2: 3921
    • 8a Hazra CK. Gandhamsetty N. Park S. Chang S. Nat. Commun. 2016; 7: 13431
    • 8b Bender TA. Dabrowski JA. Zhong HY. Gagne MR. Org. Lett. 2016; 18: 4120
    • 8c Adduci LL. Bender TA. Dabrowski JA. Gagné MR. Nat. Chem. 2015; 7: 576
    • 8d Drosos N. Morandi B. Angew. Chem. Int. Ed. 2015; 54: 8814
    • 8e Mack DJ. Guo B. Njardarson JT. Chem. Commun. 2012; 48: 7844
    • 8f Chojnowski J. Rubinsztajn S. Cella JA. Fortuniak W. Cypryk M. Kurjata J. Kaźmierski K. Organometallics 2005; 24: 6077
    • 8g Gevorgyan V. Liu J.-X. Rubin M. Benson S. Yamamoto Y. Tetrahedron Lett. 1999; 40: 8919
  • 9 Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 10a Hreczycho G. Eur. J. Inorg. Chem. 2015; 67
    • 10b Hanada S. Motoyama Y. Nagashima H. Eur. J. Org. Chem. 2008; 4097
  • 11 Liu ZJ. Lin XL. Yang N. Su ZS. Hu CW. Xiao PH. He YY. Song ZL. J. Am. Chem. Soc. 2016; 138: 1877 ; and references cited therein

    • For related works, see:
    • 12a Sakai N. Horikawa S. Ogiwara Y. RSC Adv. 2016; 6: 81763
    • 12b Bercot EA. Kindrachuk DE. Rovis T. Org. Lett. 2005; 7: 107
    • 12c Mukaiyama T. Izumi J. Shiina I. Chem. Lett. 1997; 187
  • 13 Corma A. Iborra S. Velty A. Chem. Rev. 2007; 107: 2411
  • 14 Horváth IT. Mehdi H. Fábos V. Boda L. Mika LT. Green Chem. 2008; 10: 238
    • 15a Korpaka M. Pietruszkaa J. Adv. Synth. Catal. 2011; 353: 1420
    • 15b Adrio LA. Quek LS. Taylor JG. Hii KK. M. Tetrahedron 2009; 65: 10334
    • 15c Müller P. Lacrampe F. Bernardinelli G. Tetrahedron: Asymmetry 2003; 14: 1503
    • 15d Fang J.-M. Hong B.-C. Liao L.-F. J. Org. Chem. 1987; 52: 855
  • 16 Chatterjee B. Mondal D. Bera S. Tetrahedron: Asymmetry 2012; 23: 1170
  • 17 Koschker P. Kähny M. Breit B. J. Am. Chem. Soc. 2015; 137: 3131 ; and references cited therein
    • 18a Pisani L. Superchi S. D’Elia A. Scafato P. Rosini C. Tetrahedron 2012; 68: 5779
    • 18b Ghosh M. Bose S. Ghosh S. Tetrahedron Lett. 2008; 49: 5424
    • 18c Zhang Y. Wang Y.-Q. Dai W.-M. J. Org. Chem. 2006; 71: 2445
    • 18d Ozeki M. Hashimoto D. Nishide K. Kajimoto T. Node M. Tetrahedron: Asymmetry 2005; 16: 1663
  • 19 Nahm S. Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
  • 20 Craig II RA. Loskot SA. Mohr JT. Behenna DC. Harned AM. Stoltz BM. Org. Lett. 2015; 17: 5160