Synthesis 2017; 49(20): 4703-4710
DOI: 10.1055/s-0036-1588500
paper
© Georg Thieme Verlag Stuttgart · New York

An Intramolecular Cycloaddition Approach to Construct Polysubstituted Pyrrolidones from Alkynyl Carboxamides and PTSA

Xiao-Dan Han
a   Department of Applied Chemistry, Jiang Xi Academic of Sciences, Nanchang 330096, P. R. of China
,
Chuan-Qing Ren
b   Shaanxi Key Laboratory of Catalysis, School of Chemical & Environmental Science, Shaanxi, Sci-Tech University, Hanzhong, 723000 Shaanxi, P. R. of China   Email: kanxl433@nenu.edu.cn   Email: hjw19771985@163.com
,
Jian-Ping Fu
a   Department of Applied Chemistry, Jiang Xi Academic of Sciences, Nanchang 330096, P. R. of China
,
Wei Xiong
a   Department of Applied Chemistry, Jiang Xi Academic of Sciences, Nanchang 330096, P. R. of China
,
Hui-Bin Wang
a   Department of Applied Chemistry, Jiang Xi Academic of Sciences, Nanchang 330096, P. R. of China
,
Xiao-Na Dong
a   Department of Applied Chemistry, Jiang Xi Academic of Sciences, Nanchang 330096, P. R. of China
,
Jian-Wei Ji
b   Shaanxi Key Laboratory of Catalysis, School of Chemical & Environmental Science, Shaanxi, Sci-Tech University, Hanzhong, 723000 Shaanxi, P. R. of China   Email: kanxl433@nenu.edu.cn   Email: hjw19771985@163.com
,
Ju-Wu Hu  *
a   Department of Applied Chemistry, Jiang Xi Academic of Sciences, Nanchang 330096, P. R. of China
› Author Affiliations
Financial support for this research by the National Natural Science Foundation of China (31260400, 21502109), Science Foundation for Young Doctors of Technology Department of Jiangxi Province (20161BBF60103), and start up Foundation of Shaanxi Key Laboratory of Catalysis (SLGQD13(2)-5, SLGKYQD2-12), and analysis and testing foundation of Jiang Xi Academic of Sciences are gratefully acknowledged.
Further Information

Publication History

Received: 23 March 2017

Accepted after revision: 14 June 2017

Publication Date:
25 July 2017 (online)


Abstract

An efficient synthetic route to highly substituted pyrrolidone derivatives has been developed from an easily available alkynyl carboxamide and 4-methylbenzenesulfonic acid (PTSA). In the reaction, PTSA is not only used as acid catalyst but also as a reactant to provide a source for OTs group. A mechanism is proposed to involve the protonation of the alcohol substrate/cyclopropylcarbinol-homoallylic rearrangement/intramolecular N-nucleophilic cyclization reactions.

Supporting Information

 
  • References

    • 1a Bhat C. Tilve SG. Tetrahedron Lett. 2013; 54: 245
    • 1b Duan XJ. Li XM. Wang BG. J. Nat. Prod. 2007; 70: 1210
    • 1c Takahashi K. Midori M. Kawano K. Ishihara J. Hatakeyama S. Angew. Chem. Int. Ed. 2008; 47: 6244
    • 2a Armanino N. Carreira EM. J. Am. Chem. Soc. 2013; 135: 6814
    • 2b Yasui Y. Kamisaki H. Takemoto Y. Org. Lett. 2008; 10: 3303
    • 2c Touchy AS. Hakim Siddiki SM. A. Kon K. Shimizu K. ACS Catal. 2014; 4: 3045
    • 2d Carroll FI. Blough BE. Abraham P. Mills AC. Holleman JA. Wolckenhauer SA. Decker AM. Landavazo AK. McElroy T. Navarro HA. Gatch MB. Forster MJ. J. Med. Chem. 2009; 52: 6768
    • 3a Bencini M. Ranucci E. Ferruti P. Manfredi A. Macromol. Rapid Commun. 2006; 27: 1060
    • 3b Heyns IM. Pfukwa R. Klumperman B. Biomacromolecules 2016;  17:  1795
    • 3c Connal LA. Kinnane CR. Zelikin AN. Caruso F. Chem. Mater. 2009; 21: 576
    • 4a Donohue SR. Krushinski JH. Pike VW. Chernet E. Phebus L. Chesterfield AK. Felder CC. Halldin C. Schaus JM. J. Med. Chem. 2008; 51: 5833
    • 4b Kulig K. Sapa J. Nowaczyk A. Filipek B. Malawska B. Eur. J. Med. Chem. 2009; 44: 3994
    • 4c Enz A. Feuerbach D. Frederiksen MU. Gentsch C. Hurth K. Müller W. Nozulak J. Roy BL. Bioorg. Med. Chem. Lett. 2009; 19: 1287
    • 4d Jang DS. Lee GY. Lee YM. Kim YS. Sun H. Kim D. Kim JS. Chem. Pharm. Bull. 2009; 57: 397
    • 4e Myers MC. Wang J.-L. Iera JA. Bang J.-K. Hara T. Saito S. Zambetti GP. Appella DH. J. Am. Chem. Soc. 2005; 127: 6152
    • 5a Castelhano AL. Krantz A. J. Am. Chem. Soc. 1987; 109: 3491
    • 5b Banziger M. Mc Garrity JF. Meul T. J. Org. Chem. 1993; 58: 4010
    • 5c Huang PQ. Wang SL. Ye JL. Ruan YP. Huang YQ. Zheng H. Gao JX. Tetrahedron 1998; 54: 12547
    • 5d Gheorghe A. Schulte M. Reiser O. J. Org. Chem. 2006; 71: 2173
    • 5e Crucianelli E. Martelli G. Orena M. Rinaldi S. Sgolastra F. Tetrahedron: Asymmetry 2009; 20: 1824
    • 6a Blay G. Cardona L. Garcia B. Garcia CL. Pedro JR. Tetrahedron Lett. 1997; 38: 8257
    • 6b Wang PL. Li Y. Wu Y. Li C. Lan Q. Wang XS. Org. Lett. 2015; 17: 3698
    • 6c Haase C. Langer P. Tetrahedron 2009; 65: 4530
    • 6d Mariella P. Fabrizio R. Accorsia L. Parsons A. Ghelfi F. Tetrahedron 2010; 66: 1357
    • 6e Gupton J. Nakul T. Bannera E. Kluballa EJ. Halla KE. Tetrahedron 2010; 66: 9113
    • 6f Loke I. Park N. Kempf K. Jagusch C. Schobert R. Laschat S. Tetrahedron 2012; 68: 697
    • 6g Adib M. Mahdavi M. Noghani MA. Bijanzadeh HR. Tetrahedron Lett. 2007; 48: 8056
    • 7a Miyabe H. Asada R. Toyoda A. Takemoto Y. Angew. Chem. Int. Ed. 2006; 45: 5863
    • 7b Ishibashi H. Haruki S. Uchiyama M. Tamura O. Matsuo J. Tetrahedron Lett. 2006; 47: 6263
    • 8a Qi XT. Zhang H. Shao AL. Zhu L. Xu T. Gao M. Liu C. Lan Y. ACS Catal. 2015; 5: 6640
    • 8b Li JQ. Liao RZ. Ding WJ. Cheng Y. J. Org. Chem. 2007; 72: 6266
    • 8c McLaughlin M. Takahashi M. Micalizio GC. Angew. Chem. Int. Ed. 2007; 46: 3912
    • 8d Heinz LJ. Lunn WH. W. Murff RE. Paschal JW. Spangle LA. J. Org. Chem. 1996;  61:  4838
    • 9a Ghorai MK. Tiwari DP. J. Org. Chem. 2010; 75: 6173
    • 9b Dekeukeleire S. D’hooghe M. De Kimpe N. J. Org. Chem. 2009; 74: 1644
    • 10a Yang Q. Lai YY. Xiao WJ. Alper H. Tetrahedron Lett. 2008; 49: 7334
    • 10b Ma SM. Ni BK. Org. Lett. 2002; 4: 639
    • 10c Giambastiani G. Pacini B. Porcelloni M. Poli G. J. Org. Chem. 1998; 63: 804
    • 10d Nedolya NA. Schlyakhtina NI. Valentina PZ. Tetrahedron Lett. 2002; 43: 1569
  • 11 Wei ZY. Knaus EE. Tetrahedron Lett. 1993; 34: 4439
    • 12a McGrane PL. Jensen M. Livinghouse T. J. Am. Chem. Soc. 1992; 114: 5459
    • 12b Gagné MR. Nolan SP. Marks TJ. Organometallics 1990; 9: 1716
    • 12c Gagné MR. Brard L. Conticello VP. Giardelo MA. Stern CL. Marks TJ. Organometallics 1992; 11: 2003
    • 12d Sperger CA. Fiksdahl A. J. Org. Chem. 2010; 75: 4542
    • 12e Doan HD. Goré J. Vatèle JM. Tetrahedron Lett. 1999; 40: 6765
    • 12f Luo FT. Wang RT. Tetrahedron Lett. 1992; 33: 6835
    • 12g Kel’in AV. Sromek AW. Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 2074
    • 12h Cochran BM. Michael FE. J. Am. Chem. Soc. 2008; 130: 2786
    • 13a Hou JY. Wang DZ. Li F. Yan ZY. Liang YM. Liu YQ. Synth. Commun. 2012; 42: 1070
    • 13b Yoda H. Yamazaki H. Kawauchi M. Takabe K. Tetrahedron: Asymmetry 1995; 6: 2669
    • 13c Magnus NA. Staszak MA. Udodong UE. Wepsiec JP. Org. Process Res. Dev. 2006; 10: 899
    • 13d Binder JT. Kirsch SF. Org. Lett. 2003; 8: 2151
    • 13e Yu J. Shi F. Gong LZ. Acc. Chem. Res. 2011; 44: 1156
    • 13f Ibrahem I. Rios R. Vesely J. Cordova A. Tetrahedron Lett. 2007; 48: 6252
    • 14a Kim SY. Park HB. Cho JH. Yoo KH. Oh CH. Bioorg. Med. Chem. Lett. 2009; 19: 2558
    • 14b Guo Z. Orth P. Wong SC. Lavey BJ. Shi NY. Niu X. Lundell DJ. Madison V. Kozlowski JA. Bioorg. Med. Chem. Lett. 2009; 19: 54
    • 15a Chan PW. H. Mothe SR. J. Org. Chem. 2009; 74: 5887
    • 15b Schlummer B. Hartwig JF. Org. Lett. 2002; 4: 1471
    • 15c Pan YM. Zheng FJ. Lin HX. Zhan ZP. J. Org. Chem. 2009; 74: 3148
    • 15d Arcadi A. Rossi E. Tetrahedron 1998; 54: 15253
    • 15e Uchiyama M. Ozawa H. Takuma K. Matsumoto Y. Yonehara M. Hiroya K. Sakamoto T. Org. Lett. 2008; 73: 177
    • 15f Tovar JD. Swager TM. J. Org. Chem. 1999; 64: 6499
    • 16a Han ZY. Xiao H. Chen XH. Gong LZ. J. Am. Chem. Soc. 2009; 131: 9182
    • 16b Muzart J. Tetrahedron 2008; 64: 5815
    • 16c Tamaru Y. Eur. J. Org. Chem. 2005; 2647
    • 16d Yamamoto Y. Gridnev I. D. Patil NT. Jin TN. Chem. Commun. 2009; 5075
    • 16e Bras JL. Muzart J. Tetrahedron 2007; 63: 7942
    • 16f González-Rodrίguez C. Escalante L. Varela JA. Castedo L. Saà C. Org. Lett. 2009; 11: 1531
    • 17a DePuy CH. Top. Curr. Chem. 1973; 40: 73
    • 17b Yadav VK. Balamurugan R. Org. Lett. 2003; 5: 4281
    • 17c Tanaka M. Ubukata M. Matsuo T. Yasue K. Matsumoto K. Kajimoto Y. Ogo T. Inaba T. Org. Lett. 2007; 9: 3331
    • 17d Pan W. Dong D. Wang K. Zhang J. Wu R. Xiang D. Liu Q. Org. Lett. 2007; 9: 2421
    • 18a Kulinkovich OG. Chem. Rev. 2003; 103: 2597
    • 18b Rubin M. Rubina M. Gevorgyan V. Chem. Rev. 2007; 107: 3117
    • 18c Yu M. Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 18d Du D. Wang Z. Tetrahedron Lett. 2008; 49: 956
  • 19 Xie YX. Yan ZY. Wang DZ. Wu LY. Qian B. Liu XY. Liang YM. Eur. J. Org. Chem. 2009;  40: 2283
  • 20 Honda M. Mita T. Nishizawa T. Sano T. Segi M. Nakajima T. Tetrahedron Lett. 2006; 47: 5751
  • 21 Fischer H. Tomeba NK. Pahadi NT. Patil Z. Yamamoto Y. J. Am. Chem. Soc. 2008; 130: 15720