Synthesis 2017; 49(22): 5025-5038
DOI: 10.1055/s-0036-1588508
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed C–S Bond Formation via the Cleavage of C–O Bonds in the Presence of S8 as the Sulfur Source

Abed Rostami
Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran   Email: a_rostami372@yahoo.com
,
Amin Rostami*
Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran   Email: a_rostami372@yahoo.com
,
Arash Ghaderi*
Department of Chemistry, College of Sciences, Hormozgan University, 71961 Bandar Abbas, Iran   Email: aghaderi@hormozgan.ac.ir
,
Mohammad Gholinejad
Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, 5137-66731 Zanjan, Iran
,
Sajedeh Gheisarzadeh
Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran   Email: a_rostami372@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 21 June 2017

Accepted after revision: 23 June 2017

Publication Date:
03 August 2017 (eFirst)

Abstract

Useful and applicable methods for one-pot and odorless synthesis of unsymmetrical and symmetrical diaryl sulfides via C–O bond activation are presented. First, a new efficient procedure for the synthesis of unsymmetrical sulfides using the cross-coupling reaction of phenolic esters such as acetates, tosylates, and triflates and with arylboronic acid or triphenyltin chloride as the coupling partners is reported. Depending on the reaction, S8/KF or S8/NaOt-Bu system is found to be an effective source of sulfur in the presence of copper salts and in poly(ethylene glycol) as a green solvent. Then, the synthesis of symmetrical diaryl sulfides from phenolic compounds by using S8 as the sulfur source and NaOt-Bu in anhydrous DMF at 120 °C under N2 is described. By these protocols, the synthesis of a variety of unsymmetrical and symmetrical sulfides become easier than the available protocols in which thiols and aryl halides are directly used for the preparation of the sulfides.

Supporting Information

 
  • References

    • 1a Fan X. Cui X.-M. Guan Y.-H. Fu L.-A. Lv H. Guo K. Zhu H.-B. Eur. J. Org. Chem. 2014; 3: 498
    • 1b Lu Y. Li X. Wang L. Sun H. Inorg. Chem. Commun. 2014; 41: 51
    • 1c Langer NN. P. Bindrab GS. Budzelaar PH. M. Dalton Trans. 2014; 43: 11286
    • 1d Miller AJ. M. Kaminsky W. Goldberg KI. Organometallics 2014; 33: 1245
    • 1e Tan G. Szilvási T. Inoue TS. Blom B. Driess M. J. Am. Chem. Soc. 2014; 136: 9732
    • 1f Iranpoor N. Panahi F. Org. Lett. 2015; 17: 214
    • 2a Leowanawat P. Zhang N. Percec V. J. Org. Chem. 2012; 77: 1018
    • 2b Quasdorf KW. Tian X. Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
    • 2c Guan B.-T. Wang Y. Li B.-J. Yu D.-G. Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
    • 2d Baghbanzadeh M. Pilger C. Kappe CO. J. Org. Chem. 2011; 76: 1507
    • 2e Quasdorf KW. Riener M. Petrova KV. Garg NK. J. Am. Chem. Soc. 2009; 131: 17748
    • 2f Kuwano R. Shimizu R. Chem. Lett. 2011; 40: 913
    • 2g Zhao Y.-L. Li Y. Li Y. Gao L.-X. Han F.-S. Chem. Eur. J. 2010; 16: 4991
    • 2h Chen H. Huang Z. Hu X. Tang G. Xu P. Zhao Y. Cheng C.-H. J. Org. Chem. 2011; 76: 2338
    • 2i Shi C. Aldrich CC. Org. Lett. 2010; 12: 2286
    • 2j Percec V. Bae J.-Y. Hill DH. J. Org. Chem. 2012; 77: 5956
    • 2k Chen G.-J. Han F.-S. Eur. J. Org. Chem. 2012; 3575
    • 2l Li X.-J. Zhang J.-L. Geng Y. Jin Z. J. Org. Chem. 2013; 78: 5078
    • 3a Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 3b Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19
    • 3c Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
    • 3d Tobisu M. Chatani N. Top. Organomet. Chem. 2013; 44: 35
    • 4a Liu G. Huth JR. Olejniczak ET. Mendoza R. De Vries P. Leitza S. Reilly EB. Okasinski GF. Nielsen E. Fesik SW. Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 4b Nielsen SF. Nielsen E. Olsen GM. Liljefors T. Peters D. J. Med. Chem. 2000; 43: 2217
    • 4c Pasquini S. Mugnaini C. Tintori C. Botta M. Trejos A. Arvela RK. Larhed M. Witvrouw M. Michiels M. Christ F. Debyser Z. Corelli F. J. Med. Chem. 2008; 51: 5125
    • 4d Gangjee A. Zeng YB. Talreja T. McGuire JJ. Kisliuk RL. Queener SF. J. Med. Chem. 2007; 50: 5425
    • 4e Faucher A.-M. White PW. Brochu C. Maitre CG. Rancourt J. Fazal G. J. Med. Chem. 2004; 47: 18
    • 4f Wang Y. Chang W. Greenlee VR. Bioorg. Med. Chem. Lett. 2001; 11: 891
    • 4g Nielsen SF. Nielsen E. Olsen GM. Liljefors T. Peters D. J. Med. Chem. 2000; 43: 2217
    • 5a Teruyuki K. Takeaki M. Chem. Rev. 2000; 100: 3205
    • 5b Bichler P. Love JA. Top. Organomet. Chem. 2010; 31: 39
    • 5c Eichman CC. Stambuli JP. Molecules 2011; 16: 590
    • 5d Correa A. Carril M. Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 5e Bahekar SS. Sarkate AP. Wadhai VM. Wakte PS. Shinde DB. Catal. Commun. 2013; 41: 123
    • 5f Sujatha A. Thomas AM. Thankachan AP. Anilkumar G. ARKIVOC 2015; (i): 1
    • 6a Zheng N. McWilliams JC. Fleitz FJ. Armstrong JD. Volante RP. J. Org. Chem. 1998; 63: 9606
    • 6b Mispelaere-Canivet C. Spindler JF. Perrio S. Beslin P. Tetrahedron 2005; 61: 5253
    • 6c Itoh T. Mase T. Org. Lett. 2004; 6: 4587
    • 6d Lee JY. Lee PH. J. Org. Chem. 2008; 73: 7413
    • 6e Percec V. Bae JY. Hill DH. J. Org. Chem. 1995; 60: 6895
    • 6f Firouzabadi H. Iranpoor N. Gholinejad M. Samadi A. J. Mol. Catal. A: Chem. 2013; 377: 190
    • 6g Fernandez-Rodreguez MA. Shen Q. Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 6h Ghaderi A. Tetrahedron 2016; 72: 4758
    • 7a Firouzabadi H. Iranpoor N. Gholinejad M. Adv. Synth. Catal. 2010; 352: 119
    • 7b Kuhn M. Falk FC. Paradies J. Org. Lett. 2011; 13: 4100
    • 7c Gholinejad M. Karimi B. Mansouri F. J. Mol. Catal. A: Chem. 2014; 386: 20
    • 7d Mondal J. Modak A. Dutta A. Basu S. Jha SN. Bhattacharyya D. Bhaumik A. Chem. Commun. 2012; 48: 8000
    • 7e Wang L. Zhou WY. Chen SC. He MY. Chena Q. Adv. Synth. Catal. 2012; 354: 839
  • 8 Park N. Park K. Jang M. Lee S. J. Org. Chem. 2011; 76: 4371
    • 9a Li Y. Nie C. Wang H. Li X. Verpoort F. Duan C. J. Org. Chem. 2011; 76: 7331
    • 9b You W. Yan X. Liao Q. Xi C. Org. Lett. 2010; 12: 3930
  • 10 Prasad DJ. C. Sekar G. Org. Lett. 2011; 13: 1008
  • 11 Ke F. Qu Y. Jiang Z. Li Z. Wu D. Zhou X. Org. Lett. 2011; 13: 454
    • 12a Wang F. Cai S. Wang Z. Xi C. Org. Lett. 2011; 13: 3202
    • 12b Zhao P. Wang F. Xi C. Synthesis 2012; 44: 1477
    • 12c Zhao P. Liao Q. Gao H. Xi C. Tetrahedron Lett. 2013; 54: 2357
    • 12d Zhao P. Yin H. Gao H. Xi C. J. Org. Chem. 2013; 78: 5001
    • 12e Firouzabadi H. Iranpoor N. Samadi A. Tetrahedron Lett. 2014; 55: 1212
    • 13a Jiang YW. Qin YX. Xie SW. Zhang XJ. Dong JH. Ma DW. Org. Lett. 2009; 11: 5250
    • 13b Wang H. Jiang L. Chen T. Li Y. Eur. J. Org. Chem. 2010; 2324
    • 13c Martinek M. Korf M. Srogl J. Chem. Commun. 2010; 4387
    • 13d Cheng J.-H. Yi C.-L. Liu T.-J. Lee C.-F. Chem. Commun. 2012; 48: 8440
    • 13e Singh D. Deobald AM. Camargo LR. S. Tabarelli G. Rodrigues OE. D. Braga AL. Org. Lett. 2010; 12: 3288
    • 13f Chen HY. Peng WT. Lee YH. Chang YL. Chen YJ. Lai YC. Jheng NY. Chen HY. Organometallics 2013; 32: 5514
    • 13g Chen C. Xie Y. Chu L. Wang RW. Zhang X. Qing FL. Angew. Chem. Int. Ed. 2012; 52: 2492
    • 13h Shibahara F. Kanai T. Yamaguchi E. Kamei A. Yamauchi T. Murai T. Chem. Asian J. 2014; 9: 237
    • 13i Taniguchi N.  Tetrahedron 2012; 68: 10510
    • 13j Gholinejad M. Firouzabadi H. New J. Chem. 2015; 39: 5953
    • 14a Qiao Z. Liu H. Xiao X. Fu Y. Wei J. Li Y. Jiang X. Org. Lett. 2013; 15: 2594
    • 14b Hou C. He Q. Yang C. Org. Lett. 2014; 16: 5040
    • 14c Li Y. Pu J. Jiang X. Org. Lett. 2014; 16: 2692
    • 14d Qiao Z. Wei J. Jiang X. Org. Lett. 2014; 16: 1212
    • 14e Reeves JT. Camara K. Han ZS. Xu Y. Lee H. Busacca CA. Senanayake CH. Org. Lett. 2014; 16: 1196
    • 14f Zhang Y. Li Y. Zhangc X. Jiang X. Chem. Commun. 2015; 51: 941
    • 14g Gholinejad M. Eur. J. Org. Chem. 2015; 4162
    • 14h Singh N. Singh R. Raghuvanshi DS. Singh KN. Org. Lett. 2013; 15: 5874
    • 14i Arisawa M. Ichikawa T. Yamaguchi M. Org. Lett. 2012; 14: 5318
    • 14j Chen F.-J. Liao G. Li X. Wu J. Shi B.-F. Org. Lett. 2014; 16: 5644
    • 14k Li J. Li C. Yang S. An Y. Wu W. Jiang H. J. Org. Chem. 2016; 81: 7771
    • 14l Li J. Li C. Yang S. An Y. Wu W. Jiang H. J. Org. Chem. 2016; 81: 2875
    • 14m Ravi C. Reddy NN. K. Pappula V. Samanta S. Adimurthy S. J. Org. Chem. 2016; 81: 9964
    • 15a Rostami A. Rostami A. Ghaderi A. Zolfigol MA. RSC Adv. 2015; 5: 37060
    • 15b Rostami A. Rostami A. Ghaderi A. J. Org. Chem. 2015; 80: 8694
    • 15c Rostami A. Rostami A. Iranpoor N. Zolfigol MA. Tetrahedron Lett. 2016; 57: 192
    • 16a Herradura PS. Pendola KA. Guy RK. Org. Lett. 2000; 2: 2019
    • 16b Savarin C. Srogl J. Liebeskind LS. Org. Lett. 2002; 4: 4309
    • 16c Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 16d Xu HJ. Zhao YQ. Feng T. Feng YS. J. Org. Chem. 2012; 77: 2878
    • 16e Yu JT. Guo H. Yi Y. Fei H. Jiang Y. Adv. Synth. Catal. 2014; 356: 749