Synlett
DOI: 10.1055/s-0036-1588541
letter
© Georg Thieme Verlag Stuttgart · New York

Photoinduced Regioselective Lactonization of ortho-Iodobenzoic Acids with Alkenes: Synthesis of 3,4-Dihydroisocoumarin Derivatives

Xiao Zhang, Binbin Huang, Chao Yang*, Wujiong Xia*
  • State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518005, P. R. of China   Email: xyyang@hit.edu.cn   Email: xiawj@hit.edu.cn
We are grateful for financial support from China NSFC (Nos. 21372055, 21472030 and 21672047) and SKLUWRE (No. 2017DX03).
Further Information

Publication History

Received: 12 June 2017

Accepted after revision: 18 July 2017

Publication Date:
22 August 2017 (eFirst)

Abstract

A photoinduced strategy for the synthesis of a variety of 3,4-dihydroisocoumarins has been realized. The reactions proceeded from ortho-iodobenzoic acids and alkenes through a photodehalogenative lactonization with NaHCO3 as the only additive in dimethyl sulfoxide (DMSO) to provide the desired products in moderate to good yields. This method offers a simple, mild, and environmentally friendly route to 3,4-dihydroisocoumarin derivatives.

Supporting Information

 
  • References and Notes

    • 1a Dickinson J. Nat. Prod. Rep. 1993; 10: 71
    • 1b Zhang W. Krohn K. Draeger S. Schulz B. J. Nat. Prod. 2008; 71: 1078
    • 1c Lee JH. Park YJ. Kim HS. Hong YS. Kim KW. Lee JJ. J. Antibiot. 2001; 54: 463
    • 1d Engelmeier D. Hadacek F. Hofer O. Lutz-Kutschera G. Nagl M. Wurz G. Greger H. J. Nat. Prod. 2004; 67: 19
    • 1e Powers J. Asgian CJ. L. Ekici OD. James KE. Chem. Rev. 2002; 102: 4639
    • 1f Zhang W. Krohn K. Draeger S. Schulz B. J. Nat. Prod. 2008; 71: 1078
    • 2a Angelis MD. Stossi F. Waibel M. Katzenellenbogen BS. Katzenellenbogen JA. Bioorg. Med. Chem. 2005; 13: 6529
    • 2b Heynekamp JJ. Hunsaker LA. Vander Jagt TA. Royer RE. Decka LM. Vander Jagt DL. Bioorg. Med. Chem. 2008; 16: 5285
    • 2c Sappapan R. Sommit D. Ngamrojanavanich N. Pengpreecha S. Wiyakrutta S. Sriubolmas N. Pudhom K. J. Nat. Prod. 2008; 71: 1657
    • 2d Zhang H. Matsuda H. Kumahara A. Ito Y. Nakamura S. Yoshikawa M. Bioorg. Med. Chem. Lett. 2007; 17: 4972
    • 3a Sun H. Ho CL. Ding F. Soehano I. Liu XW. Liang ZX. J. Am. Chem. Soc. 2012; 134: 11924
    • 3b Li W. Wiesenfeldt MP. Glorius F. J. Am. Chem. Soc. 2017; 139: 2585
    • 4a Cai S. Wang F. Xi C. J. Org. Chem. 2012; 77: 2331
    • 4b Guo XX. J. Org. Chem. 2013; 78: 1660
    • 4c Kavala V. Wang CC. Barange DK. Kuo WC. Lei PM. Yao CF. J. Org. Chem. 2012; 77: 5022
    • 5a Chinnagolla R. k. Jeganmohan M. Chem. Commun. 2012; 2030
    • 5b Ackermann L. Pospech J. Graczyk K. Rauch K. Org. Lett. 2012; 14: 930
    • 6a Ueura T. Satoh T. Miura M. Org. Lett. 2007; 9: 1407
    • 6b Ueura K. Satoh T. Miura M. J. Org. Chem. 2007; 72: 5362
    • 6c Shimizu M. Hirano K. Satoh T. Miura M. J. Org. Chem. 2009; 74: 3478
    • 7a Cheng G. Li T. Yu JQ. J. Am. Chem. Soc. 2015; 137: 10950
    • 7b Yao T. Larock RC. J. Org. Chem. 2003; 68: 5937
    • 7c Cherry K. Parrain JL. Thibonnet J. Duchene A. Abarbri M. J. Org. Chem. 2005; 70: 6669
    • 7d Kawasaki t. Saito S. Yamamoto Y. J. Org. Chem. 2002; 67: 2653
    • 7e Zhao P. Chen D. Song G. Han K. Li X. J. Org. Chem. 2012; 77: 1579
    • 7f Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
    • 8a Marchal E. Uriac P. Legouin B. Toupet L. Weghe P. Tetrahedron 2007; 63: 9979
    • 8b Rayabarapu DK. Shukla P. Cheng CH. Org. Lett. 2003; 5: 4903
    • 8c Lowell AN. Wall PD. Waters SP. Kozlowski MC. Tetrahedron 2010; 66: 5573
    • 9a Wang XY. Ruther RE. Streifer JA. J. Am. Chem. Soc. 2010; 132: 4048
    • 9b Neilson BM. Bielawski CW. Organometallics 2013; 32: 3121
    • 9c Schuster DI. Cao JR. Kaprinidis N. J. Am. Chem. Soc. 1996; 118: 5639
    • 9d Dichiarante V. Albini A. Fagnoni M. Angew. Chem. Int. Ed. 2007; 46: 6495
    • 9e Pla D. Tan DS. Gin DY. Chem. Sci. 2014; 5: 2407
    • 9f Brimioulle R. Bach T. Angew. Chem. Int. Ed. 2014; 53: 12921
    • 9g Protti S. Albini A. Fagnoni M. Angew. Chem. Int. Ed. 2005; 44: 5675
    • 10a Bunce NJ. Landers JP. Langshaw JA. Nakai JS. Environ. Sci. Technol. 1989; 23: 213
    • 10b Joseph WT. Jagan MR. N. Scott WK. Corey RJ. S. Org. Lett. 2010; 12: 368
    • 10c David PW. Dennis AD. J. Am. Chem. Soc. 2017; 139: 4655
    • 10d Santiago EV. Al P. Roberto AR. J. Org. Chem. 2004; 69: 2037
    • 10e Maria EB. Viviana BD. Martina G. Adriana BP. Roberto AR. J. Org. Chem. 2010; 75: 2206
    • 10f Chuang TH. Li CF. Lee HZ. Wen YC. J. Org. Chem. 2013; 78: 4974
    • 10g Yang ZB. Li H. Zhang L. Zhang MT. Cheng JP. Luo SZ. Chem. Eur. J. 2015; 21: 14723
    • 10h Xuan J. Lu LQ. Chen JR. Xiao W.-J. Eur. J. Org. Chem. 2013; 6755
    • 12a Grimshaw J. de Silva AP. Chem. Soc. Rev. 1981; 10: 181
    • 12b Hoffmann N. Chem. Rev. 2008; 108: 1052
  • 13 A mixture of 2-iodo-5-methylbenzoic acid (2a; 0.2 mmol, 1 equiv), styrene 1a (0.8 mmol, 4 equiv) and NaHCO3 (0.26 mmol, 1.3 equiv) in DMSO (4 mL) was put into a quartz reaction tube (10 mL). N2 was flowed in for 10 min, then the tube was sealed and exposed to illumination with a high-pressure mercury lamp at 300 nm wavelength for 6 h. Water (20 mL) was added to the reaction system and the mixture was extracted with ethyl acetate (3 × 20 mL). The organic phase was washed with saturated salt water, dried with anhydrous sodium sulfate, and the crude products were obtained under reduced pressure and concentration. The purified products were purified by silica gel column chromatography (PE/EtOAc, 10:1), and the product 7-methyl-3-phenylisochroman-1-one 3a (75%) was obtained as a pale-yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 7.97 (s, 1 H), 7.52–7.33 (m, 6 H), 7.17 (d, J = 7.7 Hz, 1 H), 5.53 (dd, J = 12.0, 3.2 Hz, 1 H), 3.29 (dd, J = 16.3, 12.0 Hz, 1 H), 3.10 (dd, J = 16.4, 3.2 Hz, 1 H), 2.41 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 165.6, 138.6, 137.7, 135.0, 134.8, 130.6, 128.6, 128.6, 127.2, 126.1, 124.8, 80.0, 35.2, 21.0. HRMS (ESI): m/z [M + H]+ calcd for C16H15O2: 239.1067; found: 239.1066.