CC BY-ND-NC 4.0 · SynOpen 2017; 01(01): 0084-0090
DOI: 10.1055/s-0036-1588544
paper
Copyright with the author

An Approach to 1,1-Disubstituted Pyrazolylcyclopropane Building Blocks

Pavel S. Nosik
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine   Email: s.v.ryabukhin@gmail.com
b   Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
,
Oleksiy S. Artamonov
a   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine   Email: s.v.ryabukhin@gmail.com
,
Sergey V. Ryabukhin*
b   Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
,
Oleksandr O. Grygorenko
b   Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
› Author Affiliations
The work was supported by Ukrainian Government Funding (state registry No. 0114U003956) and Life Chemicals Group.
Further Information

Publication History

Received: 03 July 2017

Accepted after revision: 31 July 2017

Publication Date:
14 August 2017 (online)


Abstract

An approach to isomeric 1,1-disubstituted pyrazolylcyclopropanes that relies on lithium diisopropylamide (LDA) mediated bis-alkylation­ of the corresponding pyrazolylacetonitriles is developed. The building blocks obtained can be considered as lead-like bioisosteres of arylpyrazole and pyrazolecarboxamide moieties and are thus useful for early drug discovery projects.

Supporting Information

 
  • References

  • 1 U. S. Food and Drug Administration. Official Website, 2015. www.fda.gov (accessed 08 Dec 2015).
  • 2 Peretto I. Radaelli S. Parini C. Zandi M. Raveglia LF. Dondio G. Fontanella L. Misiano P. Bigogno C. Rizzi A. Riccardi B. Biscaioli M. Marchetti S. Puccini P. Catinella S. Rondelli I. Cenacchi V. Bolzoni PT. Caruso P. Villetti G. Facchinetti F. Del GiudiceE. Moretto N. Imbimbo BP. J. Med. Chem. 2005; 48: 5705
  • 3 Blouin M. Han Y. Burch J. Farand J. Mellon C. Gaudreault M. Wrona M. Lévesque JF. Denis D. Mathieu MC. Stocco R. Vigneault E. Therien A. Clark P. Rowland S. Xu D. O’Neill G. Ducharme Y. Friesen R. J. Med. Chem. 2010; 53: 2227
  • 4 Du X. Kim YJ. Lai S. Chen X. Lizarzaburu M. Turcotte S. Fu Z. Liu Q. Zhang Y. Motani A. Oda K. Okuyama R. Nara F. Murakoshi M. Fu A. Reagan JD. Fan P. Xiong Y. Shen W. Li L. Houze J. Medina JC. Bioorg. Med. Chem. Lett. 2012; 22: 6218
  • 5 Sasmal PK. Talwar R. Swetha J. Balasubrahmanyam D. Venkatesham B. Rawoof KA. Neelima DeviB. Jadhav VP. Khan SK. Mohan P. Srinivasa ReddyD. Nyavanandi VK. Nanduri S. Shiva KumarK. Kannan M. Srinivas P. Nadipalli P. Chaudhury H. Sebastian VJ. Bioorg. Med. Chem. Lett. 2011; 21: 4913
  • 6 Zeng H. Zhang H. Jang F. Zhao L. Zhang J. Chem. Biol. Drug Des. 2011; 78: 333
  • 7 Moss N. Xiong Z. Burke M. Cogan D. Gao DA. Haverty K. Heim-Riether A. Hickey ER. Nagaraja R. Netherton M. O’Shea K. Ramsden P. Schwartz R. Shih DT. Ward Y. Young E. Zhang Q. Bioorg. Med. Chem. Lett. 2012; 22: 7189
  • 8 Meanwell NA. J. Med. Chem. 2011; 54: 2529
  • 9 Qiao JX. Cheney DL. Alexander RS. Smallwood AM. King SR. He K. Rendina AR. Luettgen JM. Knabb RM. Wexler RR. Lam PY. Bioorg. Med. Chem. Lett. 2008; 18, 4118
    • 10a Papahatjis DP. Nikas S. Tsotinis A. Vlachou M. Makriyannis A. Chem. Lett. 2001; 3: 192
    • 10b Barbasiewicz M. Marciniak K. Fedoryński M. Tetrahedron Lett. 2006; 47: 3871
    • 11a Langer P. Freiberg W. Chem. Rev. 2004; 104: 4125
    • 11b Arava VR. Siripalli UB. R. Dubey PK. Tetrahedron Lett. 2005; 46: 7247
    • 11c Fedoryński M. Jonczyk A. Org. Prep. Proced. Int. 1995; 27: 355
    • 11d Petrosyan VA. Vasil’ev AA. Tatarinova VI. Russ. Chem. Bull. 1994; 43: 84
  • 12 Bryson TA. Roth GA. Jing-hau L. Tetrahedron Lett. 1986; 27: 3685
    • 13a Horwell DC. McKiernan MJ. Osborne S. Tetrahedron Lett. 1998; 39: 8729
    • 13b Tsotinis A. Vlachou M. Papahatjis DP. Calogeropoulou T. Nikas SP. Garratt PJ. Piccio V. Vonhoff S. Davidson K. Teh MT. Sugden D. J. Med. Chem. 2006; 49: 3509
  • 14 Huang H. Ji X. Wu W. Jiang H. Chem. Commun. 2013; 3351
  • 15 Isabel E. Bateman KP. Chauret N. Cromlish W. Desmarais S. Duong LT. Falgueyret JP. Gauthier JY. Lamontagne S. Lau CK. Léger S. LeRiche T. Lévesque J.-F. Li CS. Massé F. McKay DJ. Mellon C. Nicoll-Griffith DA. Oballa RM. Percival MD. Riendeau D. Robichaud J. Rodan GA. Rodan SB. Seto C. Thérien M. Truong VL. Wesolowski G. Young RN. Zamboni R. Black WC. Bioorg. Med. Chem. Lett. 2010; 20: 887
    • 16a Klapars A. Waldman JH. Campos KR. Jensen MS. McLaughlin M. Chung JY. Cvetovich RJ. Chen CY. J. Org. Chem. 2005; 70: 10186
    • 16b McCabe Dunn JM. Kuethe JT. Orr RK. Tudge M. Campeau L.-C. Org. Lett. 2014; 16: 6314
    • 16c Thompson AD. Huestis MP. J. Org. Chem. 2013; 78: 762
    • 17a Salikov RF. Platonov DN. Frumkin AE. Lipilin DL. Tomilov YV. Tetrahedron 2013; 69: 3495
    • 17b Furet P. Guagnano V. Fairhurst RA. Imbach-Weese P. Bruce I. Knapp M. Fritsch C. Blasco F. Blanz J. Aichholz R. Hamon J. Fabbro D. Caravatti G. Bioorg. Med. Chem. Lett. 2013; 23: 3741
    • 18a Ryabukhin SV. Panov DM. Granat DS. Ostapchuk EN. Kryvoruchko DV. Grygorenko OO. ACS Comb. Sci. 2014; 16: 146
    • 18b Ivonin SP. Kurpil’ BB. Volochnyuk DM. Grygorenko OO. Tetrahedron Lett. 2015; 56: 6248
    • 18c Borisov AV. Voloshchuk VV. Nechayev MA. Grygorenko OO. Synthesis 2013; 45: 2413
    • 18d Ivonin SP. Kurpil’ BB. Bezdudny AV. Volochnyuk DM. Grygorenko OO. J. Fluorine Chem. 2015; 176: 78
    • 18e Zhersh S. Karpenko OV. Ripenko V. Tolmachev AA. Grygorenko OO. Cent. Eur. J. Chem. 2014; 12: 67
    • 18f Artamonov OS. Bulda T. Fam TK. Slobodyanyuk EY. Volochnyuk DM. Grygorenko OO. Heterocycl. Commun. 2015; 21: 391
    • 19a McLellan P. Nelson A. Chem. Commun. 2013; 2383
    • 19b Doveston R. Marsden S. Nelson A. Drug Discovery Today 2014; 19: 813
    • 19c James T. MacLellan P. Burslem GM. Simpson I. Grant JA. Warriner S. Org. Biomol. Chem. 2014; 12: 2584
    • 19d Foley DJ. Doveston RG. Churcher I. Nelson A. Marsden SP. Chem. Commun. 2015; 11174
    • 19e Doveston RG. Tosatti P. Dow M. Foley DJ. Li HY. Campbell AJ. House D. Churcher I. Marsden SP. Nelson A. Org. Biomol. Chem. 2015; 13: 859
  • 20 Goldberg FW. Kettle JG. Kogej T. Perry MW. D. Tomkinson NP. Drug Discovery Today 2015; 20: 11
  • 21 Nadin A. Hattotuwagama C. Churcher I. Angew. Chem. Int. Ed. 2012; 51: 1114
    • 22a Nosik PS. Ryabukhin SV. Artamonov OS. Grygorenko OO. Monatsh. Chem. 2016; 147: 1629
    • 22b Azami H. Barrett D. Tanaka A. Sasaki H. Matsuda K. Sakurai M. Terasawa T. Shirai F. Chiba T. Matsumoto Y. Tawara S. Bioorg. Med. Chem. 2001; 9: 961
  • 23 Labroli M. Paruch K. Dwyer MP. Alvarez C. Keertikar K. Poker C. Rossman R. Duca JS. Fischmann TO. Madison V. Parry D. Davis N. Seghezzi W. Wiswell D. Guzi TJ. Bioorg. Med. Chem. Lett. 2011; 21: 471
  • 24 Instant JChem was used for prediction of the physicochemical properties of the compounds, Instant JChem version 17.2.13.0, 2017, ChemAxon ( http://www.chemaxon.com).
  • 25 Kombarov R. Altieri A. Genis D. Kirpichenok M. Kochubey V. Rakitina N. Titarenko Z. Mol. Diversity 2010; 14, 193
  • 26 Armarego WL. F. Chai CL. L. Purification of Laboratory Chemicals . Elsevier; Oxford: 2003