Synthesis 2018; 50(04): 793-802
DOI: 10.1055/s-0036-1588548
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalysed Cross-Coupling of Benzylammonium Salts with Boronic Acids under Mild Conditions

Paul L. Türtscher
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   eMail: rjp71@cam.ac.uk
,
Holly J. Davis
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   eMail: rjp71@cam.ac.uk
,
Robert J. Phipps*
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   eMail: rjp71@cam.ac.uk
› Institutsangaben
We are grateful to the Engineering and Physical Sciences Research Council (EPSRC, Grant Number EP/N005422/1) and Pfizer for a CASE studentship (H.J.D.), the EPSRC and the Royal Society for a University Research Fellowship (R.J.P.). P.L.T. thanks the Swiss-European Mobility Programme for Traineeships for funding his stay in Cambridge.
Weitere Informationen

Publikationsverlauf

Received: 15. Juni 2017

Accepted after revision: 20. Juli 2017

Publikationsdatum:
23. August 2017 (online)


Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry

Abstract

Herein, we give a full account of the development of the palladium­-catalysed cross-coupling of benzylammonium salts with boronic acids. A range of benzylamine-derived quaternary ammonium salts can be coupled with boronic acids under relatively mild conditions. Our optimization has identified ligands that can be used to chemoselectively cross-couple at the ammonium in the presence of chlorides. We demonstrate that intramolecular palladium-catalysed C–H activation is also a viable pathway for the putative benzyl-Pd(II) intermediate obtained upon oxidative addition and have optimised this to obtain fluorene in good yield.

Supporting Information

 
  • References

  • 1 Zhang C. Cui F. Zeng G.-m. Jiang M. Yang Z.-z. Yu Z.-g. Zhu M.-y. Shen L.-q. Science of The Total Environment 2015; 518–519: 352
  • 2 Cope AC. Trumbull ER. Olefins from Amines: The Hofmann Elimination Reaction and Amine Oxide Pyrolysis . In Organic Reactions . John Wiley & Sons, Inc; Weinheim: 2004
    • 3a Tayama E. Kimura H. Angew. Chem. Int. Ed. 2007; 46: 8869
    • 3b Biswas B. Singleton DA. J. Am. Chem. Soc. 2015; 137: 14244
    • 4a Sweeney JB. Chem. Soc. Rev. 2009; 38: 1027
    • 4b Pine SH. The Base-Promoted Rearrangements of Quaternary Ammonium Salts. In Organic Reactions. John Wiley & Sons, Inc; Weinheim: 2004
    • 5a Blakey SB. MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 6046
    • 5b Reeves JT. Fandrick DR. Tan Z. Song JJ. Lee H. Yee NK. Senanayake CH. Org. Lett. 2010; 12: 4388
    • 5c Xie L.-G. Wang Z.-X. Angew. Chem. Int. Ed. 2011; 50: 4901
    • 5d Zhang X.-Q. Wang Z.-X. J. Org. Chem. 2012; 77: 3658
    • 5e Guo W.-J. Wang Z.-X. Tetrahedron 2013; 69: 9580
    • 5f Zhang X.-Q. Wang Z.-X. Org. Biomol. Chem. 2014; 12: 1448
    • 5g Zhang H. Hagihara S. Itami K. Chem. Eur. J. 2015; 21: 16796
    • 5h Zhu F. Tao J.-L. Wang Z.-X. Org. Lett. 2015; 17: 4926
    • 5i Hu J. Sun H. Cai W. Pu X. Zhang Y. Shi Z. J. Org. Chem. 2016; 81: 14
  • 6 Maity P. Shacklady-McAtee DM. Yap GP. A. Sirianni ER. Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 7a Shacklady-McAtee DM. Roberts KM. Basch CH. Song Y.-G. Watson MP. Tetrahedron 2014; 70: 4257
    • 7b Basch CH. Cobb KM. Watson MP. Org. Lett. 2016; 18: 136
  • 8 Moragas T. Gaydou M. Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
  • 9 Yi P. Zhuangyu Z. Hongwen H. Synthesis 1995; 245
  • 10 Davis HJ. Mihai MT. Phipps RJ. J. Am. Chem. Soc. 2016; 138: 12759
  • 11 During the preparation of this manuscript, Zhao and co-workers reported a similar cross-coupling reaction, see: Wang T. Yang S. Xu S. Han C. Guo G. Zhao J. RSC Adv. 2017; 7: 15805 . Disappointingly, our own previous contribution was not acknowledged, despite our paper being referenced in another context. A notable advantage of our protocol is that ligand optimisation allows the reactions to be carried out at 50 °C rather than 100 °C
  • 12 Lacour J. Vial L. Herse C. Org. Lett. 2002; 4: 1351
    • 13a Hwang SJ. Cho SH. Chang S. J. Am. Chem. Soc. 2008; 130: 16158
    • 13b Hwang SJ. Kim HJ. Chang S. Org. Lett. 2009; 11: 4588
    • 14a Amatatsu Y. J. Phys. Chem. A 2011; 115: 13611
    • 14b Conyard J. Addison K. Heisler IA. Cnossen A. Browne WR. Feringa BL. Meech SR. Nat. Chem. 2012; 4: 547
    • 14c Knaapila M. Bright DW. Nehls BS. Garamus VM. Almásy L. Schweins R. Scherf U. Monkman AP. Macromolecules 2011; 44: 6453
    • 14d Thangthong A. m. Prachumrak N. Namuangruk S. Jungsuttiwong S. Keawin T. Sudyoadsuk T. Promarak V. Eur. J. Org. Chem. 2012; 5263
    • 14e Fleckenstein CA. Plenio H. Chem. Eur. J. 2007; 13: 2701
  • 15 Loe-Mie F. Marchand G. Berthier J. Sarrut N. Pucheault M. Blanchard-Desce M. Vinet F. Vaultier M. Angew. Chem. Int. Ed. 2010; 49: 424
  • 16 Liu Y. Fang R. Tan X. Wang Z. Zhang X. Chem. Eur. J. 2012; 18: 15650
  • 17 Zhang J. Lu G. Xu J. Sun H. Shen Q. Org. Lett. 2016; 18: 2860
  • 18 Quinio P. Benischke AD. Moyeux A. Cahiez G. Knochel P. Synlett 2015; 26: 514
  • 19 Endo K. Ishioka T. Ohkubo T. Shibata T. J. Org. Chem. 2012; 77: 7223
  • 20 Kuwano R. Yokogi M. Chem. Commun. 2005; 5899
  • 21 Rao ML. N. Dhanorkar RJ. RSC Adv. 2014; 4: 13134
  • 22 Zhang P. Xu J. Gao Y. Li X. Tang G. Zhao Y. Synlett 2014; 25: 2928
  • 23 Nakamura K. Tobisu M. Chatani N. Org. Lett. 2015; 17: 6142
  • 24 Pal S. Chowdhury S. Rozwadowski E. Auffrant A. Gosmini C. Adv. Synth. Catal. 2016; 358: 2431
  • 25 Huang R. Zhang X. Pan J. Li J. Shen H. Ling X. Xiong Y. Tetrahedron 2015; 71: 1540
  • 26 Schäfer G. Bode JW. Angew. Chem. Int. Ed. 2011; 50: 10913
  • 27 Ghorai J. Anbarasan P. J. Org. Chem. 2015; 80: 3455
  • 28 Shi G. Chen D. Jiang H. Zhang Y. Zhang Y. Org. Lett. 2016; 18: 2958