Synlett
DOI: 10.1055/s-0036-1588549
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine-Catalyzed Regioselective Sulfenylation of 4H-Pyrido[1,2-a]pyrimidin-4-ones with Sulfonyl Hydrazides

Wenjie Liua, b, Shaohua Wang*a, b, Zhihao Caia, Ziying Lia, Jianwen Liua, Anda Wanga
  • aSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. of China
  • bGuangdong Cosmetics Engineering & Technology Research Center, Guangzhou, 510006, P. R. of China   Email: wangshaohua108@163.com
The work was financially supported by the Project for Enhanced Innovation of Guangdong Pharmaceutical University, Provincial Experimental Teaching Demonstration Center of Chemistry and Chemical Engineering.
Further Information

Publication History

Received: 16 June 2017

Accepted after revision: 18 July 2017

Publication Date:
22 August 2017 (eFirst)

Abstract

A simple and efficient method for direct sulfenylation of 4H-pyrido[1,2-a]pyrimidin-4-ones with sulfonyl hydrazides has been developed. The transformation is catalyzed by iodine under metal-free conditions with high regioselectivity and good functional-group tolerance.

Supporting Information

 
  • References and Notes

    • 1a Gangjee A. Zeng Y. Talreja T. McGuire JJ. Kisliuk RL. Queener SF. J. Med. Chem. 2007; 50: 3046
    • 1b Bagley MC. Davis T. Dix MC. Fusillo V. Pigeaux M. Rokicki MJ. Kipling D. J. Org. Chem. 2009; 74: 8336
    • 1c De Martino G. Edler MC. La Regina G. Coluccia A. Barbera MC. Barrow D. Nicholson RI. Chiosis G. Brancale A. Hamel E. Artico M. Silvestri R. J. Med. Chem. 2006; 49: 947
    • 1d Gallardo-Godoy A. Fierro A. McLean TH. Castillo M. Cassels BK. Reyes-Parada M. Nichols DE. J. Med. Chem. 2005; 48: 2407
    • 1e Kundu D. Chatterjee T. Ranu BC. Adv. Synth. Catal. 2013; 355: 2285
    • 1f Wilson AJ. Kerns JK. Callahan JF. Moody C. J. Med. Chem. 2013; 56: 7463
    • 1g Liu H. Jiang X. Chem. Asian J. 2013; 8: 2546
    • 1h Takimiya K. Shinamura S. Osaka I. Miyazaki E. Adv. Mater. 2011; 23: 4347
    • 2a Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 2b Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 2c Martinek M. Korf M. Srogl J. Chem. Commun. 2010; 46: 4387
    • 2d Niu B. Xu L. Xie P. Wang M. Zhao W. Pittman CU. Jr. Zhou A. ACS Comb. Sci. 2014; 16: 454
    • 2e Umierski N. Manolikakes G. Org. Lett. 2013; 15: 4972
    • 3a Paul S. Shrestha R. Edison TN. J. I. Lee YR. Kim SH. Adv. Synth. Catal. 2016; 358: 3050
    • 3b Li X. Xu Y. Wu W. Jiang C. Qi C. Jiang H. Chem. Eur. J. 2014; 20: 7911
    • 3c Kumaraswamy G. Raju R. Adv. Synth. Catal. 2014; 356: 2591
    • 3d Chu L. Yue X. Qing F.-L. Org. Lett. 2010; 12: 1644
    • 3e Dai C. Xu Z. Huang F. Yu Z. Gao YF. J. Org. Chem. 2012; 77: 4414
    • 3f Iwasaki M. Iyanaga M. Tsuchiya Y. Nishimura Y. Li W. Li Z. Nishihara Y. Chem. Eur. J. 2014; 20: 2459
    • 3g Luo F. Pan C. Li L. Chen F. Cheng J. Chem. Commun. 2011; 47: 5304
    • 3h Mohan DC. Rao SN. Ravi C. Adimurthy S. Asian J. Org. Chem. 2014; 3: 609
    • 3i Tian H. Zhu C. Yang H. Fu H. Chem. Commun. 2014; 50: 8875
    • 3j Tran LD. Popov I. Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 3k Wendlandt AE. Suess AM. Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 3l Yang Y. Hou W. Qin L. Du J. Feng H. Zhou B. Li Y. Chem. Eur. J. 2014; 20: 416
    • 3m Zhang S. Qian P. Zhang M. Hu M. Cheng J. J. Org. Chem. 2010; 75: 6732
    • 4a Rahaman R. Devi N. Sarma K. Barman P. RSC Adv. 2016; 6: 10873
    • 4b Barman P. Rahaman R. Synlett 2017; 28: 684
    • 4c Katrun P. Hongthong S. Hlekhlai S. Pohmakotr M. Reutrakul V. Soorukram D. Jaipetch T. Kuhakarn C. RSC Adv. 2014; 4: 18933
    • 4d Qi H. Zhang T. Wan K. Luo M. J. Org. Chem. 2016; 81: 4262
    • 4e Xiao F. Xie H. Liu S. Deng G.-J. Adv. Synth. Catal. 2014; 356: 364
    • 4f Yang F.-L. Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 5a Zhao W. Xie P. Bian Z. Zhou A. Ge H. Zhang M. Ding Y. Zheng L. J. Org. Chem. 2015; 80: 9167
    • 5b Zhao X. Deng Z. Wei A. Li B. Lu K. Org. Biomol. Chem. 2016; 14: 7304
    • 6a Bagdi AK. Mitra S. Ghosh M. Hajra A. Org. Biomol. Chem. 2015; 13: 3314
    • 6b Ravi C. Mohan DC. Adimurthy S. Org. Lett. 2014; 16: 2978
    • 6c Siddaraju Y. Prabhu KR. J. Org. Chem. 2016; 81: 7838
  • 7 Zhao X. Lu X. Wei A. Jia X. Chen J. Lu K. Tetrahedron Lett. 2016; 57: 5330
    • 8a Yang D. Sun P. Wei W. Meng L. He L. Fang B. Jiang W. Wang H. Org. Chem. Front. 2016; 3: 1457
    • 8b Sun P. Yang D. Wei W. Sun X. Zhang W. Zhang H. Wang Y. Wang H. Tetrahedron 2017; 73: 2022
    • 8c Sun J. Qiu J.-K. Jiang B. Hao W.-J. Guo C. Tu S.-J. J. Org. Chem. 2016; 81: 3321
    • 9a Yan K. Yang D. Sun P. Wei W. Liu Y. Li G. Lu S. Wang H. Tetrahedron Lett. 2015; 56: 4792
    • 9b Huang Z. Zhang D. Qi X. Yan Z. Wang M. Yan H. Lei A. Org. Lett. 2016; 18: 2351
    • 10a Yang D. Yan K. Wei W. Zhao J. Zhang M. Sheng X. Li G. Lu S. Wang H. J. Org. Chem. 2015; 80: 6083
    • 10b Kang X. Yan R. Yu G. Pang X. Liu X. Li X. Xiang L. Huang G. J. Org. Chem. 2014; 79: 10605
    • 10c Du B. Jin B. Sun P. Org. Lett. 2014; 16: 3032
  • 11 Guo S.-r. Yuan Y.-q. Xiang J.-n. Org. Lett. 2013; 15: 4654
    • 12a Kennis LE. J. Bischoff FP. Mertens CJ. Love CJ. Van den Keybus FA. F. Pieters S. Braeken M. Megens AA. H. P. Leysen JE. Bioorg. Med. Chem. Lett. 2002; 10: 71
    • 12b La Motta C. Sartini S. Mugnaini L. Simorini F. Taliani S. Salerno S. Marini AM. Da Settimo F. Lavecchia A. Novellino E. Cantore M. Failli P. Ciuffi M. J. Med. Chem. 2007; 50: 4917
    • 12c Shulman DG. Amdahl L. Washington C. Graves A. Clin. Ther. 2003; 25: 1096
    • 12d Solanki PV. Uppelli SB. Pandit BS. Mathad VT. ACS Sustainable Chem. Eng. 2013; 1: 243
    • 12e Yoshida K.-i. Nakayama K. Ohtsuka M. Kuru N. Yokomizo Y. Sakamoto A. Takemura M. Hoshino K. Kanda H. Nitanai H. Namba K. Yoshida K. Imamura Y. Zhang JZ. Leed VJ. Watkins WJ. Bioorg. Med. Chem. 2007; 15: 7087
  • 13 Queiroz M.-JR. P. Begouin A. Ferreira IC. F. R. Kirsch G. Calhelha RC. Barbosa S. Estevinho LM. Eur. J. Org. Chem. 2004; 3679
  • 14 Hu S. Huang Y. Wu Y.-J. He H. Grant-Young KA. Bertekap RL. Whiterock V. Brassil P. Lentz K. Sivaprakasam P. Langley DR. Westphal RS. Scola PM. Bioorg. Med. Chem. 2014; 22: 1782
  • 15 Matsutani S. Mizushima Y. EP 0329126, 1989
  • 16 Liu W. Wang S. Zhang Q. Yu J. Li J. Xie Z. Cao H. Chem. Asian J. 2014; 9: 2436
  • 17 Liu W. Wang S. Jiang Y. He P. Zhang Q. Cao H. Asian J. Org. Chem. 2015; 4: 312
  • 18 3-(Phenylsulfanyl)-4H-pyrido[1,2-a]pyrimidin-4-one (3a); Typical Procedure
    1a
    (29 mg, 0.2 mmol), PhSO2NHNH2 (2a; 41 mg, 0.24 mmol), I2 (10mg, 20 mol%), and EtOH (0.5 mL) were stirred in a sealed tube at 100 °C for 12 h. When the reaction was complete (TLC), EtOAc (10 mL) was added. The organic phase was washed with brine (2 × 3 mL) and dried (Na2SO4). The solvent was removed, and the crude product was separated by column chromatography [silica gel, PE–EtOAc (3:1)] to give a white solid; yield: 40 mg (78%); mp 106–108 °C. 1H NMR (400 MHz, CDCl3): δ = 9.09 (d, J = 7.2 Hz, 1 H), 8.46 (s, 1 H), 7.80–7.76 (m, 1 H), 7.69 (m, 1 H), 7.39 (m, 2 H), 7.30–7.27 (m, 2 H), 7.24–7.19 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 157.5, 156.7, 151.3, 136.4, 134.5, 130.1, 129.2, 127.7, 127.1, 126.7, 116.4, 111.6. ESI-MS: m/z = 255 [M + H]+. HRMS (ESI): m/z [M + H]+ calcd for C14H11N2OS: 255.0593; found: 255.0597. Anal. Calcd C, 66.12; H, 3.96; N, 11.02. Found: C, 66.03; H, 3.91; N, 10.90.