CC BY ND NC 4.0 · SynOpen 2017; 01(01): 0091-0096
DOI: 10.1055/s-0036-1588550
paper
Copyright with the author

Palladium-Catalyzed α-Arylation of Dimethyl Malonate and Ethyl Cyanoacetate with o-Alkoxybromobenzenes for the Synthesis of Phenylacetic Acid, Esters and Phenylacetonitriles

José F. Cívicosa, Paulo R. R. Costa*a, Jorge L. O. Domingos*b
  • aInstituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil   Email: prrcosta2011@gmail.com
  • bDep. Química Orgânica, Instituto de Química, Centro de Tecnologia e Ciências, Universidade do Estado do Rio de Janeiro, 20550-900, Rio de Janeiro, RJ, Brazil
We thank the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; BJT-2014), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação Carlos­ Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).
Further Information

Publication History

Received: 28 July 2017

Accepted after revision: 01 August 2017

Publication Date:
22 August 2017 (online)

Abstract

α-Aryl malonate and α-aryl cyano acetate moieties are found in the structures of many bioactive compounds. They are also key intermediates for the synthesis of many compounds such as isoflavonoids. In this work, we synthesized these compounds, with different patterns of substitution, starting with the palladium-catalyzed reaction of o-alkoxy-bromoarenes with dimethyl malonate or ethyl cyanoacetate. Under the conditions applied, moderate to good yields of arylmalonate mono­esters, phenylacetic esters or acids, and benzylnitrile derivatives were obtained.

Supporting Information

 
  • References

  • 1 Suchaud V. Bailly F. Lion C. Calmels C. Andréola ML. Christ F. Debyser Z. Cotelle P. J. Med. Chem. 2014; 57: 4640
  • 2 Martin JR. Godel T. Hunkeler W. Jenck F. Moreau J.-L. Sleight AJ. Widmer U. Psychopharmacological Agents . In Kirk-Othmer Encyclopedia of Chemical Technology . 2000
  • 3 Nocquet P.-A. Opatz T. Eur. J. Org. Chem. 2016; 1156
  • 4 Bogdan AR. Poe SL. Kubis DC. Broadwater SJ. McQuade DT. Angew. Chem. Int. Ed. 2009; 48: 8547
  • 5 Costantino G. Pellicciari R. J. Med. Chem. 1996; 39: 3998
  • 6 Barslund AF. Poulsen MH. Bach TB. Lucas S. Kristensen AS. Strømgaard K. J. Nat. Prod. 2011; 74: 483
    • 7a Goel A. Kumar A. Hemberger Y. Raghuvanshi A. Jeet R. Tiwari G. Knauer M. Kureel J. Singh AK. Gautam A. Trivedi R. Singh D. Bringmann G. Org. Biomol. Chem. 2012; 10: 9583
    • 7b Basha GM. Yadav SK. Srinuvasarao R. Prasanthi S. Ramu T. Mangarao N. Siddaiah V. Can. J. Chem. 2013; 91: 763
    • 8a Vasquez-Martinez Y. Ohri RV. Kenyon V. Holman TR. Sepúlveda-Boza S. Bioorg. Med. Chem. 2007; 15: 7408
    • 8b Liu J. Yang Z. Luo S. Hao Y. Ren J. Su Y. Wang W. Li R. Synth. Commun. 2014; 44: 3296
  • 9 Delorme D. Gregor V. Roberts E. Sun E. WO 9967203, 1999 ; Chem. Abstr. 1999, 132, 49802
  • 10 Fleming FF. Yao L. Ravikumar PC. Funk L. Shook BC. J. Med. Chem. 2010; 53: 7902
    • 11a Pearson RG. J. Am. Chem. Soc. 1949; 71: 2212
    • 11b Hoogenboom BE. Ihrig PJ. Langsjoen AN. Linn CJ. Mulder SD. J. Chem. Educ. 1991; 68: 689
    • 12a Yoshida M. Maeyama Y. Shishido K. Tetrahedron 2012; 68: 9962
    • 12b Deng P. Lei Y. Zheng X. Li S. Wu J. Zhu F. Ong BS. Zhang Q. Dyes Pigm. 2016; 125: 407
    • 12c Yoshikawa M. Kamisaki H. Kunitomo J. Oki H. Kokubo H. Suzuki A. Ikemoto T. Nakashima K. Kamiguchi N. Harada A. Kimura H. Taniguchi T. Bioorg. Med. Chem. 2015; 23: 7138
    • 13a Uno M. Seto K. Takahashi S. J. Chem. Soc., Chem. Commun. 1984; 932
    • 13b Uno M. Seto K. Ueda W. Masuda M. Takahashi S. Synthesis 1985; 506
    • 13c Sakamoto T. Kato E. Kondo Y. Yamanaka H. Chem. Pharm. Bull. 1988; 36: 1664
    • 13d Palucki M. Buchwald SL. J. Am. Chem. Soc. 1997; 119: 11108
    • 13e Hartwig JF. Hamann BC. J. Am. Chem. Soc. 1997; 119: 12382
    • 13f Satoh T. Kawamura Y. Miura M. Nomura M. Angew. Chem. Int. Ed. Engl. 1997; 36: 1740
    • 14a Johansson CC. C. Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
    • 14b Bellina F. Rossi R. Chem. Rev. 2010; 110: 1082
  • 15 Beare NA. Hartwig JF. J. Org. Chem. 2002; 67: 541
  • 16 Stauffer SR. Beare NA. Stambuli JP. Hartwig JF. J. Am. Chem. Soc. 2001; 123: 4641
  • 17 Fernandes TA. Domingos JL. O. Rocha LI. A. Medeiros S. Nájera C. Costa PR. R. Eur. J. Org. Chem. 2014; 1314
    • 18a Malki F. Touati A. Rahal S. Moulay S. Asian J. Chem. 2011; 23: 961
    • 18b Niwayama S. Cho H. Lin C. Tetrahedron Lett. 2008; 49: 4434
    • 18c Niwayama S. J. Org. Chem. 2000; 65: 5834
  • 19 Luo M. Liu X. Zu Y. Fu Y. Zhang S. Yao L. Efferth T. Chem.-Biol. Interact. 2010; 188: 151
  • 20 Skouta R. Li CJ. Tetrahedron Lett. 2007; 48: 8343
  • 21 Baciocchi E. Dell’Aira D. Ruzziconi R. Tetrahedron Lett. 1986; 27: 2763
  • 22 Gandi VR. Lu Y. Chem. Commun. 2015; 16188
  • 23 Daikin Kogyo Co. Ltd. Jpn. Kokai Tokkyo Koho JP 59051251 A 19840324, 1984 ; Chem Abstr. 1984, 101, 72461
  • 24 Kamijo T. Tsubaki A. Yamaguchi T. Hirata K. Jpn. Kokai Tokkyo Koho JP 03024047 A 19910201, 1991 ; Chem Abstr. 1991, 115, 49430
  • 25 Jaita S. Phakhodee W. Pattarawarapan M. Synlett 2015; 26: 2006
  • 26 Al-Maharik N. Botting NP. Tetrahedron 2004; 60: 1637
  • 27 van Aardt TG. van Rensburg H. Ferreira D. Tetrahedron 2001; 57: 7113
  • 28 Chiba T. Akizawa T. Matsukawa M. Nishi M. Kawai N. Yoshioka M. Chem. Pharm. Bull. 1996; 44: 972
  • 29 Morton AA. Brachman AE. J. Am. Chem. Soc. 1954; 76: 2973
  • 30 Bernier D. Brückner R. Synthesis 2007; 2249
  • 31 Gray TI. Pelter A. Ward RS. Tetrahedron 1979; 35: 2539
  • 32 Shih TL. Ruiz-Sanchez J. Mrozik H. Tetrahedron Lett. 1987; 28: 6015
  • 33 Pinard E. Gaudry M. Hénot F. Thellend A. Tetrahedron Lett. 1998; 39: 2739
  • 34 Tseng K.-NT. Rizzi AM. Szymczak NK. J. Am. Chem. Soc. 2013; 135: 16352
  • 35 Neill KG. J. Chem. Soc. 1953; 3454